Pattern recognition receptors (PRRs), which include the Toll-like receptors (TLRs), are involved in the innate immune response to infection. TLR4 is a model for the TLR family and is the main LPS receptor. We wanted to determine the expression of TLR4 and compare it with that of TLR2 and CD14 along the gastrointestinal mucosa of normal and colitic BALB/c mice. Colitis was induced with 2.5% dextran sodium sulfate (DSS). Mucosa from seven segments of the digestive tract (stomach, small intestine in three parts, and colon in three parts) was isolated by two different methods. Mucosal TLR4, CD14, TLR2, MyD88, and IL-1β mRNA were semiquantified by Northern blotting. TLR4 protein was determined by Western blotting. TLR4/MD-2 complex and CD14 were evaluated by immunohistochemistry. PRR genes were constitutively expressed and were especially stronger in colon. TLR4 and CD14 mRNA were increased in the distal colon, but TLR2 mRNA was expressed more strongly in the proximal colon, and MyD88 had a uniform expression throughout the gut. Accordingly, TLR4 and CD14 protein levels were higher in the distal colon. TLR4/MD-2 and CD14 were localized at crypt bottom epithelial cells. TLR4/MD2, but not CD14, was found in mucosal mononuclear cells. Finally, DSS-induced inflammation was localized in the distal colon. All genes studied were up-regulated during DSS-induced inflammation, but the normal colon-stressed gut distribution was preserved. Our findings demonstrate that TLR4, CD14, and TLR2 are expressed in a compartmentalized manner in the mouse gut and provide novel information about the in vivo localization of PRRs.
MFG-E8 (milk fat globule-epidermal growth factor 8) deficiency is strongly associated with acquisition of immune-mediated disorders due to the loss of tissue homeostasis. However, comparatively little is known regarding its functions in gastrointestinal tract disorders, in which immune homeostasis is a major concern. Herein, we report altered MFG-E8 expression in inflamed colons during the acute phase of murine experimental colitis and found that treatment with recombinant MFG-E8, but not its arginine-glycine-aspartate mutant counterpart, ameliorated colitis by reducing inflammation and improving disease parameters. To reveal the MFG-E8-mediated antiinflammatory mechanism, we employed an in vitro system, which showed the down-regulation of NF-κB in an LPS-dependent manner. Additionally, MFG-E8 altered αvβ3 integrin-mediated focal adhesion kinase phosphorylation by impeding the binding of one of its potent ligands osteopontin, which becomes activated during colitis. Taken together, our results indicated that MFG-E8 has a novel therapeutic potential for treatment of colitis.
TLR4, a member of pattern recognition receptors, is the main receptor of LPS. MD-2 physically associates with TLR4 on the cell surface and confers LPS responsiveness. Helicobacter pylori LPS is one of the major virulence factors for induction of gastritis. We demonstrated in this study the role of MD-2 in TLR4-dependent signaling in H. pylori-associated gastritis. Gastric biopsy samples collected from patients with and without H. pylori infection and four gastric cancer cell lines were used for this study. TLR-4 and MD-2 expression in biopsy specimens and the cell lines was examined by using RT-PCR. Localization of TLR-4 in histological sections was evaluated by immunohistochemistry. For in vitro functional assays, we established stable transfectants of AGS cells expressing TLR4 and MD-2. Cellular distribution of TLR4 was examined by flow cytometry. NF-κB activation and activation of IL-8 and MD-2 promoters were assessed by reporter gene assay. H. pylori infection up-regulated the TLR4 and MD-2 expression in gastric mucosa. TLR4 staining was observed predominantly in epithelial cells, located in both the cytoplasm and at the apical surface. MD-2 transfection in AGS cells markedly increased cell surface expression of TLR4 and augmented the activation of NF-κB and IL-8 promoter upon stimulation with H. pylori LPS. Live H. pylori also stimulated transcriptional activation of MD-2. This study revealed that MD-2 expression is elevated in gastric epithelial cells during H. pylori infection, suggesting that the TLR4/MD-2 system is a potent receptor complex involved in the response to H. pylori LPS in the stomach.
Myelin is synthesized about the time of birth. The Src-family tyrosine kinase Fyn is involved in the initial events of myelination. Fyn is present in myelin-forming cells and is activated through stimulation of cell surface receptors such as large myelin-associated glycoprotein (L-MAG). Here we show that Fyn stimulates transcription of the myelin basic protein (MBP) gene for myelination. MBP is a major component of the myelin membrane. In 4-week-old Fyn-deficient mice, MBP is significantly reduced, and electron microscopic analysis showed that myelination is delayed, compared with wild-type mice. The Fyn-deficient mice had thinner, more irregular myelin than the wild-type. We found that Fyn stimulates the promoter activity of the MBP gene by approximately sevenfold. The region responsible for the transactivation by Fyn is located between nucleotides -675 and -647 with respect to the transcription start site. Proteins binding to this region were found by gel shift study, and the binding activity correlates with Fyn activity during myelination. These results suggest that transactivation of the MBP gene by Fyn is important for myelination.
The present study showed for the first time that Reg protein may be a potent stimulator of gastric epithelial cells in H. pylori-infected human gastric mucosa stimulated by IL-8. Further, our findings provide evidence of a novel link between Reg protein and H. pylori infection, which may help explain the molecular mechanisms underlying H. pylori-associated diseases, including gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.