We have identified Xenopus homologs of the budding yeast Sld5 and its three interacting proteins. These form a novel complex essential for the initiation of DNA replication in Xenopus egg extracts. The complex binds to chromatin in a manner dependent on replication licensing and S-phase CDK. The chromatin binding of the complex and that of Cdc45 are mutually dependent and both bindings require Xenopus Cut5, the yeast homolog of which interacts with Sld5. On replicating chromatin the complex interacts with Cdc45 and MCM, putative components of replication machinery. Electron microscopy further reveals that the complex has a ring-like structure. These results suggest that the complex plays an essential role in the elongation stage of DNA replication as well as the initiation stage.
Robust transmission of information despite the presence of variation is a fundamental problem in cellular functions. However, the capability and characteristics of information transmission in signaling pathways remain poorly understood. We describe robustness and compensation of information transmission of signaling pathways at the cell population level. We calculated the mutual information transmitted through signaling pathways for the growth factor-mediated gene expression. Growth factors appeared to carry only information sufficient for a binary decision. Information transmission was generally more robust than average signal intensity despite pharmacological perturbations, and compensation of information transmission occurred. Information transmission to the biological output of neurite extension appeared robust. Cells may use information entropy as information so that messages can be robustly transmitted despite variation in molecular activities among individual cells.
Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.