Two glucose-regulated proteins, GRP78 and GRP94, are major constituents of the endoplasmic reticulum (ER) of mammalian cells. These proteins are synthesized constitutively in detectable amounts under normal growth conditions; they can also be induced under a variety of conditions of stress including glucose starvation and treatment with drugs that inhibit cellular glycosylation, with calcium ionophores or with amino-acid analogues. Unlike the closely-related heat shock protein (HSP) family, the GRPs are not induced significantly by high temperature. Recently, GRP78 has been identified as the immunoglobulin heavy chain binding protein (BiP) (ref. 5 and Y.K. et al., in preparation) which binds transiently to a variety of nascent, wild-type secretory and transmembrane proteins and permanently to malfolded proteins that accumulate within the ER. We have tested the hypothesis that the presence of malfolded proteins may be the primary signal for induction of GRPs by expressing wild-type and mutant forms of influenza virus haemagglutinin (HA) in simian cells. Only malfolded HAs, whose transport from the ER is blocked, induced the synthesis of GRPs 78 and 94. Additional evidence is presented that malfolding per se, rather than abnormal glycosylation, is the proximal inducer of this family of stress proteins.
GM1 ganglioside-bound amyloid -protein (GM1/A), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. To elucidate the molecular mechanism underlying GM1/A formation, the effects of lipid composition on the binding of A to GM1-containing lipid bilayers were examined in detail using fluorescent dye-labeled human A-(1-40). Increases in not only GM1 but also cholesterol contents in the lipid bilayers facilitated the binding of A to the membranes by altering the binding capacity but not the binding affinity. An increase in membranebound A concentration triggered its conformational transition from helix-rich to -sheet-rich structures. Excimer formation of fluorescent dye-labeled GM1 suggested that A recognizes a GM1 "cluster" in membranes, the formation of which is facilitated by cholesterol. The results of the present study strongly suggested that increases in intramembrane cholesterol content, which are likely to occur during aging, appear to be a risk factor for amyloid fibril formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.