Labyrinth seals have been used as non-contacting sealing devices for rotors such as on turbo machines. In recent years, an improvement of the sealing performance of labyrinth seals has been required due to the increasing pressure of turbo machines. In this paper, it is suggested that new type pump labyrinth seals (Radial labyrinth type) have high sealing performance on pump wear rings in the radial direction of fundamental labyrinth grooves seals. This study was carried out by CFD analysis. First, radial labyrinth seals were tested in an actual double suction pump. Subsequently, it became clear that pump radial labyrinth seals have an effect of increasing pump efficiency by reducing leakage compared to general plain wear ring seals. It was also confirmed by various experiments that the radial labyrinth seals have the effect of increasing pump suction specific speed. Furthermore, it was demonstrated that the rotor-dynamics coefficients of radial labyrinth seals are smaller than plain seals.
Dynamic fluid forces acting on an impeller of a diffuser type mixed flow pump have been studied. The behavior of the thrust generated by the vortex occurrence in a pump intake sump was investigated. The force of distinct discontinuities such as hysteresis phenomenon from a pump hydraulic performance was measured. In pump partial load operation the radial thrust increases discontinuously because of the reverse flow at impeller inlet. The radial and axial thrust discontinuities occur at different threshold flow rates when increasing or decreasing the pump discharge flow thereby composing a hysteresis loop. Synchronous and non-synchronous components of radial thrust increase during the onset of reverse flow zones. A prediction method for dynamic radial thrust was derived based on Black's theory. Qualitative comparison with the measured experimental results for dynamic radial thrust showed reasonable agreement around pump best efficiency flow rate. The pump intake sump test apparatus, in which both an air-entrained surface vortex and a submerged vortex will occur, was employed and the radial thrust was measured. The level of radial thrust is dependent on the pump intake sump water level. The radial thrust begins to increase due to the occurrence of a full air core vortex to intake. When submerged as well as full air core continuous vortices occur, the radial thrust and the fluctuation of total pump head become abruptly large. The fluctuation of radial thrust becomes the highest when the impeller blade cutting the air-drawing large vortex imposes shock-like forces which generate not only an unbalance force but also nZ vane passing component.
Axial thrust forces acting on an impeller of a diffuser type mixed flow pump and the behavior of the axial thrust generated by the vortex occurrence in a pump intake sump were studied. The thrust from distinct discontinuities, such as the hysteresis phenomenon, was measured from a pump's hydraulic performance. In pump partial load operation the axial thrust increases discontinuously because of the reverse flow at impeller inlet. Synchronous and non-synchronous components of axial thrust increase during the onset of reverse flow zones. A prediction method for static axial thrust was derived based on Oshima's theory, accounting for the pressure reduction at pump suction bell-mouth caused by a vortex. Qualitative comparison of the predicted results with the actual static axial thrust results measured during the experiment, showed reasonable similarities around pump best efficiency flow rate. The thrust was measured using a pump intake sump test apparatus in which both an air-entrained surface vortex and a submerged vortex could occur. The level of dynamic axial thrust is dependent on the pump intake sump water level and the dynamic axial thrust begins to increase when a full air core vortex occurs at the pump intake. When submerged as well as full air core continuous vortices occur,the axial thrust and the fluctuation of total pump head become abruptly large. The fluctuation of axial thrust becomes the highest when the impeller draws in a large air-drawing vortex, imposing a pressure fluctuation which generates not only a rotational speed but also nZ vane passing and low frequency components. 1. 緒 言
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.