We investigated the optical properties of isolated single aggregates of Ag nanoparticles (Ag nanoaggregates) on which rhodamine 6G molecules were adsorbed to reveal experimentally a correlation among plasmon resonance Rayleigh scattering, surface-enhanced resonance Raman scattering (SERRS), and its background light emission. From the lack of excitation-laser energy dependence of background emission maxima we concluded that the background emission is luminescence, not Raman scattering. The polarization dependence of both SERRS and background emission was the same as that of the lowest-energy plasmon resonance maxima, which is associated with a longitudinal plasmon. From the common polarization dependence, we identified that the lowest-energy plasmon is coupled with both SERRS and background emission. In addition, we revealed that the lowest-energy plasmon with a higher quality factor (Q factor) yields larger SERRS and background emission intensity. Also, we identified that the Q factor dependence of the SERRS intensity was similar to that of the background emission intensity. This similarity directly supported us to demonstrate an enhancement of both SERRS and background emission by coupling with a common plasmon radiative mode.
How particles aggregate into an interesting dendritic structure has been the object of research for many years because of its importance in understanding physical processes involved and in designing novel materials. In this work, we for the first time describe an oriented attachment-based assembly mechanism for formation of different types of dendritic silver nanostructures at room temperature. It is found that the concentration of both AgNO(3) and p-aminoazobenzene (PA) molecules has a significant effect on the formation and growth of these novel nanostructures. Characterization by transmission electron microscopy (TEM) clearly shows that the dendritic silver nanostructures can be obtained through the preferential oriented growth along a crystallographically special direction. Interestingly, we observe that the oriented attachment at room temperature can also take place between relatively large single-crystalline silver particles with a diameter range from 20 to 60 nm, which may provide a new possibility for the design of novel metal nanostructures by using large metal nanoparticles as building blocks at room temperature. Moreover, a surface-enhanced Raman scattering (SERS) technique is used to investigate the role of PA molecules during the growth of the dendritic silver nanostructures.
This article reports the designed preparation of two different kinds of novel porous metal nanostructured films, namely, an ordered macroporous Au/Ag nanostructured film and an ordered hollow Au/Ag nanostructured film. Different from previous reports, the presently proposed method can be conveniently used to control film structures by simply varying the experimental conditions. The morphology of these films has been characterized by scanning electron microscopy (SEM), and their performance as surface-enhanced Raman scattering (SERS) substrates has been evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such porous nanostructured films consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. The interconnected nanostructured aggregate, long-range ordering porosity, and nanoscale roughness are important factors responsible for this large SERS enhancement ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.