Recent studies suggest that one or more genes on chromosome 5q21 are important for the development of colorectal cancers, particularly those associated with familial adenomatous polyposis (FAP). To facilitate the identification of genes from this locus, a portion of the region that is tightly linked to FAP was cloned. Six contiguous stretches of sequence (contigs) containing approximately 5.5 Mb of DNA were isolated. Subclones from these contigs were used to identify and position six genes, all of which were expressed in normal colonic mucosa. Two of these genes (APC and MCC) are likely to contribute to colorectal tumorigenesis. The MCC gene had previously been identified by virtue of its mutation in human colorectal tumors. The APC gene was identified in a contig initiated from the MCC gene and was found to encode an unusually large protein. These two closely spaced genes encode proteins predicted to contain coiled-coil regions. Both genes were also expressed in a wide variety of tissues. Further studies of MCC and APC and their potential interaction should prove useful for understanding colorectal neoplasia.
Previous studies suggested that one or more genes on chromosome 5q21 are responsible for the inheritance of familial adenomatous polyposis (FAP) and Gardner's syndrome (GS), and contribute to tumor development in patients with noninherited forms of colorectal cancer. Two genes on 5q21 that are tightly linked to FAP (MCC and APC) were found to be somatically altered in tumors from sporadic colorectal cancer patients. One of the genes (APC) was also found to be altered by point mutation in the germ line of FAP and GS patients. These data suggest that more than one gene on chromosome 5q21 may contribute to colorectal neoplasia, and that mutations of the APC gene can cause both FAP and GS. The identification of these genes should aid in understanding the pathogenesis of colorectal neoplasia and in the diagnosis and counseling of patients with inherited predispositions to colorectal cancer.
Abstract. Triple negative breast cancer (TNBC) has a poor outcome due to the lack of beneficial therapeutic targets. To clarify the molecular mechanisms involved in the carcinogenesis of TNBC and to identify target molecules for novel anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were purified by laser-microbeam microdissection. We identified 301 and 321 transcripts that were significantly upregulated and downregulated in TNBC, respectively. In particular, gene expression profile analyses of normal human vital organs allowed us to identify 104 cancer-specific genes, including those involved in breast carcinogenesis such as NEK2, PBK and MELK. Moreover, gene annotation enrichment analysis revealed prominent gene subsets involved in the cell cycle, especially mitosis. Therefore, we focused on cell cycle regulators, asp (abnormal spindle) homolog, microcephaly-associated (Drosophila) (ASPM) and centromere protein K (CENPK) as novel therapeutic targets for TNBC. Small-interfering RNA-mediated knockdown of their expression significantly attenuated TNBC cell viability due to G1 and G2/M cell cycle arrest. Our data will provide a better understanding of the carcinogenesis of TNBC and could contribute to the development of molecular targets as a treatment for TNBC patients.
Recent studies have suggested the existence of a tumor suppressor gene located at chromosome region 5q21. DNA probes from this region were used to study a panel of sporadic colorectal carcinomas. One of these probes, cosmid 5.71, detected a somatically rearranged restriction fragment in the DNA from a single tumor. Further analysis of the 5.71 cosmid revealed two regions that were highly conserved in rodent DNA. These sequences were used to identify a gene, MCC (
m
utated in
c
olorectal
c
ancer), which encodes an 829-amino acid protein with a short region of similarity to the G protein-coupled m3 muscarinic acetylcholine receptor. The rearrangement in the tumor disrupted the coding region of the MCC gene. Moreover, two colorectal tumors were found with somatically acquired point mutations in MCC that resulted in amino acid substitutions. MCC is thus a candidate for the putative colorectal tumor suppressor gene located at 5q21. Further studies will be required to determine whether the gene is mutated in other sporadic tumors or in the germ line of patients with an inherited predisposition to colonic tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.