Purpose: We have recently reported EBV+ B-cell lymphoproliferative disorders (LPD) occurring predominantly in elderly patients, which shared features of EBV+ B-cell neoplasms arising in the immunologically deteriorated patients despite no predisposing immunodeficiency and were named as senile or age-related EBV+ B-cell LPDs.To further characterize this disease, age-related EBV+ B-cell LPDs were compared with EBV-negative diffuse large B-cell lymphomas (DLBCL). Experimental Design: Among 1,792 large B-cell LPD cases, 96 EBV+ cases with available clinical data set were enrolled for the present study. For the control group, 107 patients aged over 40 years with EBV-negative DLBCL were selected.We compared clinicopathologic data between two groups and determined prognostic factors by univariate and multivariate analysis. Results: Patients with age-related EBV+ B-cell LPDs showed a higher age distribution and aggressive clinical features or parameters than EBV-negative DLBCLs: 44% with performance status >1, 58% with serum lactate dehydrogenase level higher than normal, 49% with B symptoms, and higher involvement of skin and lung. Overall survival was thus significantly inferior in age-related EBV+ group than in DLBCLs. Univariate and multivariate analyses further identified two factors, B symptoms and age older than 70 years, independently predictive for survival. A prognostic model using these two variables well defined three risk groups: low risk (no adverse factors), intermediate risk (one factor), and high risk (two factors). Conclusions: These findings suggest that age-related EBV+ B-cell LPDs constitute a distinct group, and innovative therapeutic strategies such as EBV-targeted T-cell therapy should be developed for this uncommon disease.
Elevated levels of beta-Amyloid (Abeta) are present in the brains of individuals with either the sporadic or familial form of Alzheimer's disease (AD), and the deposition of Abeta within the senile plaques that are a hallmark of AD is thought to be a primary cause of the cognitive dysfunction that occurs in AD. Recent evidence suggests that Abeta induces neuronal apoptosis in the brain and in primary neuronal cultures, and that this Abeta-induced neuronal death may be responsible in part for the cognitive decline found in AD patients. In this study we have characterized one mechanism by which Abeta induces neuronal death. We found that in cortical neurons exposed to Abeta, activated c-Jun N-terminal kinase (JNK) is required for the phosphorylation and activation of the c-Jun transcription factor, which in turn stimulates the transcription of several key target genes, including the death inducer Fas ligand. The binding of Fas ligand to its receptor Fas then induces a cascade of events that lead to caspase activation and ultimately cell death. By analyzing the effects of mutations in each of the components of the JNK-c-Jun-Fas ligand-Fas pathway, we demonstrate that this pathway plays a critical role in mediating Abeta-induced death of cultured neurons. These findings raise the possibility that the JNK pathway may also contribute to Abeta-dependent death in AD patients.
Genomic typing of class I HLA alleles adds substantially to the success of transplantation of hematopoietic stem cells from unrelated donors, even if the donors are serologically identical to their recipients with respect to HLA-A, B, and DR antigens.
Summary Background The risks after unrelated-donor haemopoietic-cell transplantation with matched HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1 alleles between donor and recipient (10/10 matched) can be decreased by selection of unrelated donors who also match for HLA-DPB1; however, such donors are difficult to find. Classification of HLA-DPB1 mismatches based on T-cell-epitope groups could identify mismatches that might be tolerated (permissive) and those that would increase risks (non-permissive) after transplantation. We did a retrospective study to compare outcomes between permissive and non-permissive HLA-DPB1 mismatches in unrelated-donor haemopoietic-cell transplantation. Methods HLA and clinical data for unrelated-donor transplantations submitted to the International Histocompatibility Working Group in haemopoietic-cell transplantation were analysed retrospectively. HLA-DPB1 T-cell-epitope groups were assigned according to a functional algorithm based on alloreactive T-cell crossreactivity patterns. Recipients and unrelated donors matching status were classified as HLA-DPB1 match, non-permissive HLA-DPB1 mismatch (those with mismatched T-cell-epitope groups), or permissive HLA-DPB1 mismatch (those with matched T-cell-epitope groups). The clinical outcomes assessed were overall mortality, non-relapse mortality, relapse, and severe (grade 3–4) acute graft-versus-host disease (aGvHD). Findings Of 8539 transplantations, 5428 (64%) were matched for ten of ten HLA alleles (HLA 10/10 matched) and 3111 (36%) for nine of ten alleles (HLA 9/10 matched). Of the group overall, 1719 (20%) were HLA-DPB1 matches, 2670 (31%) non-permissive HLA-DPB1 mismatches, and 4150 (49%) permissive HLA-DPB1 mismatches. In HLA 10/10-matched transplantations, non-permissive mismatches were associated with a significantly increased risk of overall mortality (hazard ratio [HR] 1·15, 95% CI 1·05–1·25; p=0·002), non-relapse mortality (1·28, 1·14–1·42; p<0·0001), and severe aGvHD (odds ratio [OR] 1·31, 95% CI 1·11–1·54; p=0·001), but not relapse (HR 0·89, 95% CI 0·77–1·02; p=0·10), compared with permissive mismatches. There were significant differences between permissive HLA-DPB1 mismatches and HLA-DPB1 matches in terms of non-relapse mortality (0·86, 0·75–0·98; p=0·03) and relapse (1·34, 1·17–1·54; p<0·0001), but not for overall mortality (0·96, 0·87–1·06; p=0·40) or aGvHD (OR 0·84, 95% CI 0·69–1·03; p=0·09). In the HLA 9/10 matched population, non-permissive HLA-DPB1 mismatches also increased the risk of overall mortality (HR 1·10, 95% CI 1·00–1·22; p=0·06), non-relapse mortality (1·19, 1·05–1·36; p=0·007), and severe aGvHD (OR 1·37, 95% CI 1·13–1·66; p=0·002) compared with permissive mismatches, but the risk of relapse was the same in both groups (HR 0·93, 95% CI 0·78–1·11; p=0·44). Outcomes for HLA 10/10-matched transplantations with non-permissive HLA-DPB1 mismatches did not differ substantially from those for HLA 9/10-matched transplantations with permissive HLA-DPB1 mismatches or HLA-DPB1 matches. Interpretation T-cell-epitope matching de...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.