We investigated the expression of a panel of Toll-like receptors (TLRs) and their functions in human eosinophils. Eosinophils constitutively expressed TLR1, TLR4, TLR7, TLR9, and TLR10 mRNAs (TLR4 greater than TLR1, TLR7, TLR9, and TLR10 greater than TLR6). In contrast, neutrophils expressed a larger variety of TLR mRNAs (TLR1, TLR2, TLR4, TLR6, TLR8 greater than TLR5, TLR9, and TLR10 greater than TLR7). Although the expression levels in eosinophils were generally less prominent compared with those in neutrophils, eosinophils expressed a higher level of TLR7. Furthermore, among various TLR ligands (S-(2,3-bis(palmitoyloxy)-(2-RS)-propyl)-N-palmitoyl-Cys-Ser-(Lys)4, poly(I:C), LPS, R-848, and CpG DNA), only R-848, a ligand of TLR7 and TLR8, regulated adhesion molecule (CD11b and L-selectin) expression, prolonged survival, and induced superoxide generation in eosinophils. Stimulation of eosinophils by R-848 led to p38 mitogen-activated protein kinase activation, and SB203580, a p38 mitogen-activated protein kinase inhibitor, almost completely attenuated R-848-induced superoxide generation. Although TLR8 mRNA expression was hardly detectable in freshly isolated eosinophils, mRNA expression of TLR8 as well as TLR7 was exclusively up-regulated by IFN-γ but not by either IL-4 or IL-5. The up-regulation of the TLRs by IFN-γ had potentially functional significance: the extent of R-848-induced modulation of adhesion molecule expression was significantly greater in cells treated with IFN-γ compared with untreated cells. Although the natural ligands for TLR7 and TLR8 have not yet been identified, our results suggest that eosinophil TLR7/8 systems represent a potentially important mechanism of a host-defensive role against viral infection and mechanism linking exacerbation of allergic inflammation and viral infection.
Engagement of antigen and immunoglobulin receptors on hematopoietic cells is directly coupled to activation of nonreceptor protein tyrosine kinases (PTKs) that then phosphorylate critical intracellular substrates. In mast cells stimulated through the FcvarepsilonRI receptor, activation of several PTKs including Syk leads to degranulation and release of such mediators of the allergic response as histamine and serotonin. Regulation of Syk function occurred through interaction with the Cbl protein, itself a PTK substrate in this system. Overexpression of Cbl led to inhibition of Syk and suppression of serotonin release from mast cells, demonstrating its ability to inhibit a nonreceptor tyrosine kinase. Complex adaptor proteins such as Cbl can directly regulate the functions of the proteins they bind.
The c-cbl protooncogene product (p120(cbl)) is a known substrate of multiple tyrosine kinases. It is found in complexes with critical signal transduction molecules, including the linker protein Grb2. Here, we demonstrate using an immobilized Grb2-binding peptide that the Grb2-p120(cbl) complex dissociates in vivo following engagement of the T-cell antigen receptor in Jurkat T-cells. The early kinetics of this dissociation correlate with the known time course of tyrosine phosphorylation of p120(cbl) and other substrates. This dissociation persists in vivo even when p120(cbl) becomes dephosphorylated to basal levels. However, this decreased association is not observed in protein overlay assays on nitrocellulose membranes in which a Grb2 fusion protein is used to detect p120(cbl) from stimulated or unstimulated cells. These data suggest that the tyrosine phosphorylation of p120(cbl) does not completely account for the regulation of its association with Grb2. Additionally, we used truncation mutations of p120(cbl) to map the p120(cbl)-Grb2 interaction to amino acids 481-528 of p120(cbl); this interaction is stronger in longer constructs that include additional proline-rich motifs. The in vivo regulation of the Grb2-p120(cbl) complex further supports the idea of a significant role for p120(cbl) in receptor-mediated signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.