1. Aquatic macrophyte diversity and water quality of 55 ponds in western Japan were related to land use and morphometric variables to identify the environmental factors that sustain biodiversity and the spatial extent at which these factors operate. 2. The relevant spatial extent for floating-leaved macrophyte richness (500 m from pond edge) was larger than that for submerged macrophyte occurrence (10, 75 and 100 m), whereas emergent macrophyte richness was best explained at much larger extents (1000 m). Total macrophyte richness was explained at the extent of 500, 750 and 1000 m. The extents relevant for explaining the physicochemical condition of pond water (100 and 250 m) were similar to those for submerged and floating-leaved macrophytes, suggesting that these two growth forms are more sensitive to water quality compared to emergent macrophytes. 3. Diversity of all three growth forms and that of total macrophytes collectively were inversely related to turbidity and nutrient concentration; among the three growth forms, submerged macrophytes were most affected by water quality. 4. Negative relationships were found between the proportion of urban area and the diversity of the three growth forms and that of total macrophytes and water quality. Species richness of emergent, floating-leaved and total macrophytes decreased with depth and increased with surface area up to about 5000 m 2 , above which it declined. 5. Urbanisation and enlargement of ponds were the two main factors that decreased aquatic macrophyte diversity in irrigation ponds. To alleviate the adverse effects of urban areas on aquatic macrophyte diversity, our results suggest that management efforts should focus on the creation of buffer zones within the relevant spatial extent from the pond edge.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate + nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T. japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN) : TP is ≥10 and TN/10 when TN : TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.
We tested whether maternal effects have led to the adaptive divergence of strains of the natural hybrid Potamogeton anguillanus, whose putative parents show contrastingly divergent ecologies. To examine the correlation between phenotypic characters and maternal types, we conducted drought experiments and DNA typing using nuclear and chloroplast genes. In the field, we investigated the distribution of the maternal type along the depth and the inshore-offshore gradient. Hybrids of P. malaianus mothers (M-hybrids) and those of P. perfoliatus mothers (P-hybrids) could not be distinguished morphologically under submerged conditions, but differed in drought tolerance. M-hybrids and P. malaianus formed more terrestrial shoots and exhibited higher survival than P-hybrids and P. perfoliatus in drought experiments. The distribution survey clarified that M-hybrids were dominant in shallow and inshore areas, whereas they were almost absent in deeper and offshore areas. These results indicate that the natural hybrid P. anguillanus differs in adaptive values depending on the maternal type. Bidirectional hybridization and heritable maternal effects may have played important roles in its phenotypic adaptation to local environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.