2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes including thiophene, selenophene, and tellurophene analogues as organic semiconductors for field-effect transistors were effectively synthesized in three steps from commercially available 1,4-dibromobenzene. All three benzodichalcogenophenes acted as good p-type semiconductors, and particularly the selenophene analogue, 2,6-diphenylbenzo[1,2-b:4,5-b']diselenophene, showed high FET mobility of 0.17 cm2 V-1 s-1.
[reaction, structures: see text] A general and convenient synthesis of benzo[1,2-b:4,5-b']dichalcogenophenes including the thiophene (BDT, 1), selenophene (BDS, 2), and tellurophene (BDTe, 3) homologues is developed. Thus synthesized heterocycles are structurally characterized by single-crystal X-ray analysis, and all three homologues are isostructural with one another. They all have completely planar molecular structures packed in a herringbone arrangement. Their physicochemical properties were also elucidated by means of cyclic voltammetry (CV) and UV-vis spectra.
[1]Benzoselenopheno[3,2-b][1]benzoselenophene (BSBS) and its 2,7-diphenyl derivative (DPh-BSBS) were readily synthesized from diphenylacetylene and bis(biphenyl-4-yl)acetylene, respectively, with a newly developed straightforward selenocyclization protocol. In contrast to the parent BSBS that has poor film-forming properties, the diphenyl derivative DPh-BSBS formed a good thin film on the Si/SiO(2) substrate by vapor deposition. X-ray diffraction examination revealed that this film consists of highly ordered molecules that are nearly perpendicular to the substrate, making it suitable for use in the fabrication of organic field-effect transistors (OFETs). When fabricated at different substrate temperatures (room temperature, 60 degrees C, and 100 degrees C) in a "top-contact" configuration, all the DPh-BSBS-based OFET devices exhibited excellent p-channel field-effect properties with hole mobilities >0.1 cm(2) V(-1) s(-1) and current on/off ratios of approximately 10(6). This high performance was essentially maintained over 3000 continuous scans between V(g) = +20 and -100 V and reproduced even after storage under ambient laboratory conditions for at least one year.
We report on the fabrication and characterization of single crystal field-effect transistors (FETs) based on 2,6-diphenylbenzo[1,2-b:4,5-b']diselenophene (DPh-BDSe). These organic field-effect transistors (OFETs) function as p-channel accumulation-mode devices. At room temperature, for the best devices, the threshold voltage is less than -7V and charge carrier mobility is nearly gate bias independent, ranging from 1cm 2 /Vs to 1.5 cm 2 /Vs depending on the source-drain bias. Mobility is increased slightly by cooling below room temperature and decreases below 280 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.