So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5-O-3-thiotriphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids.Bile acids are not simply byproducts of cholesterol metabolism but play essential roles in the absorption of dietary lipids and in the regulation of bile acid synthesis (1). Farnesoid X receptor and pregnane X receptor have been recently identified as specific nuclear receptors for bile acids (2-5). Through the activation of farnesoid X receptor bile acids repress the expression of cholesterol 7␣-hydroxylase, the rate-limiting enzyme in bile acid synthesis (2, 3). The activation of pregnane X receptor by bile acids results in both the repression of cholesterol 7␣-hydroxylase and the transcriptional induction of cytochrome P450 3a, the bile acid-metabolizing enzyme (4, 5). However, no cell surface receptor for bile acids has yet been identified. In hepatobiliary diseases including obstructive jaundice, viral hepatitis, and primary biliary cirrhosis, the mean serum concentration of bile acids exceeds 100 M (range, 70 -400 M), whereas normally this remains below 10 M (6). At such high concentrations, bile acids are known to exhibit immunosuppressive effects on cell-mediated immunity and macrophage functions (6 -8). The phagocytic capacity of the reticuloendothelial system including Kupffer cells is depressed in cholestasis or obstructive jaundice (8). Cholestatic jaundice frequently causes infectious complications and endotoxemia, which are closely related to elevated serum bile acid levels (7, 9). Furthermore, bile acids including deoxycholic acid (DCA) 1 and chenodeoxycholic acid (CDCA) have been demonstrated to have inhibitory activities on the lipopolysaccharide (LPS)-induced production of cytokines in macrophages, including interleukin (IL)-1, IL-6, and tumor necrosis factor ␣ (TNF␣) (10, 11). However, the precise mechanisms involved have remained unclear. Here we show that a novel G prot...
Metastasis is a major cause of death in cancer patients and involves a multistep process including detachment of cancer cells from a primary cancer, invasion of surrounding tissue, spread through circulation, re-invasion and proliferation in distant organs. KiSS-1 is a human metastasis suppressor gene, that suppresses metastases of human melanomas and breast carcinomas without affecting tumorigenicity. However, its gene product and functional mechanisms have not been elucidated. Here we show that KiSS-1 (refs 1, 4) encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which we have isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and have named 'metastin'. Metastin inhibits chemotaxis and invasion of hOT7T175-transfected CHO cells in vitro and attenuates pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. The results suggest possible mechanisms of action for KiSS-1 and a potential new therapeutic approach.
occurs during normal developmental processes to allow cell types to segregate from one another. Tumor cells often recapitulate this activity and the result is an aggressive tumor cell that gains the ability to leave the site of the tumor and metastasize. At present, we understand some of the mechanisms that promote cadherin switching and some of the pathways downstream of this process that influence cell behavior. Specific cadherin family members influence growthfactor-receptor signaling and Rho GTPases to promote cell motility and invasion. In addition, p120-catenin probably plays multiple roles in cadherin switching, regulating Rho GTPases and stabilizing cadherins. Journal of Cell Science 728cadherin expression has been shown to promote motility and invasion (Hazan et al., 2000; Islam et al., 1996;Nieman et al., 1999). This loss of E-cadherin expression and gain of N-cadherin expression is reminiscent of the cadherin switching that is seen during normal embryonic development and probably underpins many of the phenotypic changes that occur in the participating cells (reviewed in Cavallaro et al., 2002; Christofori, 2003; Gerhart et al., 2004).The term cadherin switching usually refers to a switch from expression of E-cadherin to expression of N-cadherin, but also includes situations in which E-cadherin expression levels do not change significantly but the cells turn on (or increase) expression of N-cadherin. It also includes examples in which other cadherins replace or are co-expressed with E-cadherin, including R-cadherin, cadherin 11, T-cadherin and even P-cadherin, and the expression of the 'inappropriate cadherin' might alter the behavior of the tumor cells (Derycke and Bracke, 2004;Nakajima et al., 2004;Paredes et al., 2005;Patel, I. et al., 2003;Riou et al., 2006;Stefansson et al., 2004;Taniuchi et al., 2005;Tomita et al., 2000). It has even been reported that E-cadherin can influence tumorigenesis in tissues that do not normally express this cadherin. For example, ovarian surface epithelium normally expresses N-cadherin. However, during progression to the neoplastic state, the cells show decreased N-cadherin expression and increased E-cadherin and Pcadherin expression; the E-cadherin might play a role in the initiation of the aberrant differentiation that characterizes ovarian carcinogenesis (Patel, I. et al., 2003;Wong et al., 1999;Wu et al., 2007). Table 1 presents examples of cadherin switching that have been reported during normal developmental processes and during tumorigenesis.One role of cadherin switching is to allow a select population of cells to separate from their neighbors -for example, during processes such as gastrulation, epiblast cell ingression through the primitive streak and neural crest emigration from the neural tube (Edelman et al., 1983; Hatta and Takeichi, 1986;Takeichi, 1988;Takeichi et al., 2000). It is well known that cells expressing different cadherins segregate from one another in in vitro aggregation assays (Nose et al., 1988;Steinberg and Takeichi, 1994) and it is easy...
Only a few RFamide peptides have been identified in mammals, although they have been abundantly found in invertebrates. Here we report the identification of a human gene that encodes at least three RFamide-related peptides, hRFRP-1-3. Cells transfected with a seven-transmembrane-domain receptor, OT7T022, specifically respond to synthetic hRFRP-1 and hRFRP-3 but not to hRFRP-2. RFRP and OT7T022 mRNAs are expressed in particular regions of the rat hypothalamus, and intracerebroventricular administration of hRFRP-1 increases prolactin secretion in rats. Our results indicate that a variety of RFamide-related peptides may exist and function in mammals.
We searched for peptidic ligands for orphan G protein-coupled receptors utilizing a human genome data base and identified a new gene encoding a preproprotein that could generate a peptide. This peptide consisted of 43 amino acid residues starting from Nterminal pyroglutamic acid and ending at C-terminal arginine-phenylalanine-amide. We therefore named it QRFP after pyroglutamylated arginine-phenylalanineamide peptide. We subsequently searched for its receptor and found that Chinese hamster ovary cells expressing an orphan G protein-coupled receptor, AQ27, specifically responded to QRFP. We analyzed tissue distributions of QRFP and its receptor mRNAs in rats utilizing quantitative reverse transcription-polymerase chain reaction and in situ hybridization. QRFP mRNA was highly expressed in the hypothalamus, whereas its receptor mRNA was highly expressed in the adrenal gland. The intravenous administration of QRFP caused the release of aldosterone, suggesting that QRFP and its receptor have a regulatory function in the rat adrenal gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.