A 65-year-old man experienced cough and shortness of breath 3 days after receiving the first dose of the Pfizer-BioNTech coronavirus disease 2019 (COVID-19) vaccine. Chest X-ray revealed bilateral infiltrates, and the desaturation deteriorated rapidly. The symptoms and radiographic abnormalities rapidly improved after the initiation of corticosteroid therapy. Intradermal testing of the Pfizer-BioNTech COVID-19 vaccine showed a delayed positive reaction. Based on these findings, the patient was diagnosed with COVID-19 vaccineinduced pneumonitis. The timing of the onset of pneumonitis after vaccination and the results of intradermal testing suggest that Type IV hypersensitivity against COVID-19 vaccine may have been responsible for this clinical condition.
Purpose Although pirfenidone (PFD) is a key drug for the treatment of idiopathic pulmonary fibrosis (IPF), differences in tolerability between elderly and young patients remain unclear. This study aimed to investigate age-related differences in adverse drug reactions to PFD and to evaluate whether patient age influences the safety and tolerability of PFD in clinical practice. Patients and method One hundred fifty-four patients with IPF were treated with PFD in our institution between May 2009 and April 2017; these patients were classified into 2 groups on the basis of age: ≥75 years of age (elderly patients) and <75 years of age (younger patients). In each group, the clinical course, laboratory data, radiographic findings, adverse events, and tolerability of PFD at 6 months and 1 year after administration were retrospectively analyzed. Results Among the 120 patients examined in this study, 31 patients (26%) were ≥75 years of age. The continuation rate of PFD at 1 year in the elderly patient group was significantly lower (n=11 [35%] vs 57 [64%], p =0.007) than in the younger patient group. Regarding adverse drug reactions to PFD, the incidence of gastrointestinal disorders including anorexia (n=24 [77%] vs 40 [45%], p =0.002) and the discontinuation caused by gastrointestinal disorders (n=11 [35%] vs 13 [15%], p =0.019) were significantly higher in elderly patients than those in younger patients. However, with the exception of gastrointestinal disorders, other adverse drug reactions did not significantly differ between elderly and younger patients. Conclusions Compared with younger patients, elderly patients with IPF had a higher incidence of gastrointestinal disorders, along with an increased discontinuation rate of PFD. More careful management of gastrointestinal disorders may be required to ensure continuation of PFD in elderly patients.
Background The RECOVERY clinical trial reported that 6 mg of dexamethasone once daily for up to 10 days reduces the 28-day mortality in patients with coronavirus disease 2019 (COVID-19) receiving respiratory support. In our clinical setting, a fixed dose of dexamethasone has prompted the question of whether inflammatory modulation effects sufficiently reduce lung injury. Therefore, preliminary verification on the possibility of predicted body weight (PBW)-based dexamethasone therapy was conducted in patients with COVID-19 pneumonia. Methods This single-center retrospective study was conducted in a Japanese University Hospital to compare the treatment strategies/management in different periods. Consecutive patients (n = 90) with COVID-19 pneumonia requiring oxygen therapy and were treated with dexamethasone between June 2020 and May 2021 were analyzed. Initially, 60 patients administered a fixed dexamethasone dose of 6.6 mg/day were defined as the conventional group, and then, 30 patients were changed to PBW-based therapy. The 30-day discharged alive rate and duration of oxygen therapy were analyzed using the Kaplan–Meier method and compared using the log-rank test. The multivariable Cox regression was used to evaluate the effects of PBW-based dexamethasone therapy on high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), or mechanical ventilation (MV). Results In the PBW-based group, 9, 13, and 8 patients were administered 6.6, 9.9, and 13.2 mg/day of dexamethasone, respectively. Additional respiratory support including HFNC, NIV, or MV was significantly less frequently used in the PBW-based group (P = 0.0046), with significantly greater cumulative incidence of being discharged alive and shorter oxygen demand within 30 days (92 vs. 89%, log-rank P = 0.0094, 90 vs. 92%, log-rank P = 0.0002, respectively). Patients treated with PBW-based therapy significantly decreased the use of additional respiratory support after adjusting for baseline imbalances (adjusted odds ratio, 0.224; 95% confidence interval, 0.062–0.813, P = 0.023). Infection occurred in 13 (21%) and 2 (7%) patients in the conventional and PBW-based groups, respectively (P = 0.082). Conclusions In patients with COVID-19 pneumonia requiring oxygen therapy, PBW-based dexamethasone therapy may potentially shorten the length of hospital stay and duration of oxygen therapy and risk of using HFNC, NPPV, or MV without increasing serious adverse events or 30-day mortality.
Objective Methotrexate (MTX) is a cytotoxic agent that is commonly employed as an alternative to corticosteroids to treat sarcoidosis, although the proper use and efficacy of MTX as a single agent remain unclear. Methods The clinical records of patients newly diagnosed with sarcoidosis who were admitted to our institution between 2000 and 2009 were reviewed. Among these patients, 26 received 7.5 mg of MTX per week as a single agent, and the independent effects of MTX were analyzed. Results Six of the 26 patients (23%) exhibited an improvement of sarcoidosis-related lesions. The skin lesions demonstrated a relatively higher response rate (37%) than the pulmonary lesions (9%). Ten of the 26 patients (39%) experienced adverse effects, mostly mild hepatotoxicity. No severe adverse effects, including irreversible hepatotoxicity, were observed. Conclusion Although the efficacy of low-dose MTX monotherapy for sarcoidosis in this study was not high (23%), some patients exhibited definite improvements, and the drug proved to be safe, suggesting its possible benefits as a single agent for treating sarcoidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.