Skin-like health care patches (SHPs) are next-generation health care gadgets that will enable seamless monitoring of biological signals in daily life. Skin-conformable sensors and a stretchable display are critical for the development of standalone SHPs that provide real-time information while alleviating privacy concerns related to wireless data transmission. However, the production of stretchable wearable displays with sufficient pixels to display this information remains challenging. Here, we report a standalone organic SHP that provides real-time heart rate information. The 15-μm-thick SHP comprises a stretchable organic light-emitting diode display and stretchable organic photoplethysmography (PPG) heart rate sensor on all-elastomer substrate and operates stably under 30% strain using a combination of stress relief layers and deformable micro-cracked interconnects that reduce the mechanical stress on the active optoelectronic components. This approach provides a rational strategy for high-resolution stretchable displays, enabling the production of ideal platforms for next-generation wearable health care electronics.
Bottom-contact n-channel C60 thin-film transistors (TFTs) with drain/source electrodes modified by benzenethiol derivatives have been fabricated to investigate the influence of the modification on the transistor characteristics. Modification using methylbenzenethiol, aminobenzenethiol, and (dimethylamino)benzenethiol having electron-donating groups causes threshold voltages to shift to low voltages. In addition, the modification provides no significant decrease in saturation mobilities. A C60 TFT with (dimethylamino)benzenethiol-modified electrodes has a low threshold voltage of 5.1 V as compared to that of 16.8 V for a TFT with nonmodified electrodes. The threshold-voltage shift is probably because the modification reduces electron-injection barrier height and improves electron injection into organic semiconductors.
The work function of Au surfaces modified with various substituted benzenethiols has been systematically investigated for application to the design of organic electronic devices. The work function was found to vary in the range of 4.37 to 5.48 eV depending on the substituted benzenethiol used, which included pentafluorobenzenethiol, 4-fluorobenzenethiol, 4-methylbenzenethiol, 4-aminobenzenethiol, and 4-(dimethylamino)benzenethiol. Subsequent thermal annealing of the modified Au films above 373 K changed the work function back to that of an unmodified Au surface. Meanwhile, thermal desorption spectroscopy revealed species desorbing from the modified Au surfaces, indicating cleavage of the C–S bond as well as the S–Au bond.
Bottom-contact pentacene thin-film transistors (TFTs) with different electrode types have been fabricated to investigate influence of the adhesion layers and surface modification on the transistor characteristics. Gold-nickel alloy or Ti was used for the adhesion layer; the drain/source electrodes were modified with pentafluorobenzenethiol (PFBT) or nonmodified. The TFTs with AuNi layers and PFBT-modified electrodes exhibit channel-length independent saturation mobility. The electrode-type TFT with a channel length of 2.2 μm has a saturation mobility of 0.73 cm2/V s and a transconductance of 229 μS/mm. The high performance is attributed to the low contact resistance of 408 Ω cm.
The surface properties, including work function and wettability, of Au and Ag surfaces modified with various substituted benzenethiols have been investigated. Whereas the work functions of the modified Au surfaces ranged from 4.42 to 5.48 eV, those of the modified Ag surfaces ranged from 3.99 to 5.77 eV. The highest work function of 5.77 eV was obtained on the Ag surface modified with pentafluorobenzenethiol, and the lowest work function of 3.99 eV was obtained on the Ag surface modified with 4-methylbenzenethiol. The water contact angle on modified Au surfaces was found to be in a wide range from 30.9 to 88.3°. The water contact angle on the Au surface modified with a substituted benzenethiol was close to that on the Ag surface modified with the same benzenethiol. Furthermore, the tension of the modified Au surfaces was estimated from their contact angles of water and ethylene glycol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.