Glutamate uptake by the Na(+)-dependent glutamate transporter GLT-1, which is predominantly expressed in astrocytes, is crucial for regulating glutamate concentration at the synaptic cleft and achieving proper excitatory neurotransmission. A body of evidence suggests that GLT-1 constitutively traffics between the plasma membrane and endosomes via an endocytosis/recycling pathway, and forms a cluster. Here, we report substrate transport via GLT-1-induced formation of GLT-1 cluster accompanied by intracellular trafficking in rat astroglial-neuronal cultures. We constructed a recombinant adenovirus expressing enhanced green fluorescence protein (EGFP)-tagged GLT-1. Adenoviral infection resulted in the expression of functional GLT-1-EGFP preferentially in astrocytes, partly as clusters. Treatment with glutamate, but not N-methyl-D-aspartate, dramatically increased the number of GLT-1 clusters within 1 h. The estimated EC(50) value of glutamate was 240 microm. In addition, glutamate decreased the cell surface expression and increased the intracellular expression of GLT-1. The GLT-1 clusters were found in early and recycling endosomes and partly in lysosomes, and were inhibited by blockade of endocytotic pathways. Ionotropic and metabotropic glutamate receptor antagonists had no effect on glutamate-induced GLT-1 clustering. The non-transportable glutamate uptake inhibitors (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate and dihydrokainate, as well as Na(+)-free conditions, prevented the glutamate-induced GLT-1 clustering, whereas the competitive substrates, aspartate and L-trans-pyrrolidine-2,4-dicarboxylate, induced GLT-1 clustering. Furthermore, the Na(+)/K(+)-ATPase inhibitor, ouabain, and the Na(+) ionophores, gramicidin and monensin, produced GLT-1 clustering. Modulators of intracellular Ca(2+)signaling or membrane depolarization had no effect on GLT-1 clustering. Taken together, these results suggest that Na(+) influx associated with GLT-1 substrate transport triggers the formation of GLT-1 clusters accompanied by intracellular trafficking via endocytotic pathways in astrocytes.
L-Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Termination of glutamate receptor activation and maintenance of low extracellular glutamate concentrations are primarily achieved by glutamate transporters (excitatory amino acid transporters 1-5, EAATs1-5) located on both the nerve endings and the surrounding glial cells. To identify the physiological roles of each subtype, subtype-selective EAAT ligands are required. In this study, we developed a binding assay system to characterize EAAT ligands for all EAAT subtypes. We recently synthesized novel analogs of threo--benzyloxyaspartate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.