The objective of this project is to establish a practical application of the concept of Color Universal Design (CUD), the design that is recognizable to all color vision types. In our research, we looked for a clearly distinguishable combination of hues of four colors -black, red, green, and bluewhich are frequently used in these circumstances. Red-green confusion people do not confuse all kinds of red and all kinds of green. By selecting particular hues for each color, the ability to distinguish between the four colors should be greatly improved. Our study thus concluded that, by carefully selecting hues within the range of each color category, it is possible to establish color-combinations which are easily distinguishable to people of all color-vision types in order to facilitate visual communication.
The present study investigates the tendency of individuals to categorize colors. Humans recognize colors by categorizing them with specific color names such as red, blue, and yellow. When an individual having a certain type of color vision observes an object, they categorize its color using a particular color name and assume that other people will perceive the color in an identical manner. However, there are many variations in human color vision caused by photoreceptor differences in the eye, including red and green confusion. Thus, another person with a different type of color vision may categorize the color using another name. To address this issue, we attempt to determine the differences in the ranges of colors that people with different types of color vision categorize using particular color names. In the modern urban environment, most visual information, including warning signs and notice boards, is coded by color. Finding the common color categories among different types of color vision is an important step towards achieving Color Universal Design, a visual communication method that is viewer-friendly irrespective of color vision type. Herein we report on a systematic comparison between people with common (C-type) and deutan (D-type) color vision. Analysis of protan (Ptype) color vision will follow in a subsequent report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.