In this paper, the analysis and design of masterslave teleoperation systems are discussed. The goal of this paper is to build a superior master-slave system that can provide good maneuverability. We first analyze a one degree-of-freedom system including operator and object dynamics. Second, some ideal responses of master-slave systems are defined and a quantitative index of maneuverability is given, based on the concept of ideal responses. Third, we propose new control schemes of masterslave manipulators that provide the ideal kinesthetic coupling such that the operator can maneuver the system as though he/she were directly manipulating the remote object himself/herself. The proposed control scheme requires accurate dynamic models of the master and slave arms, but neither parameters of the remote object nor the operator dynamics is necessary. Last, the proposed control scheme is introduced to a prototype master-slave system and the experimental results show the validity of the proposed scheme. 11. MODELING OF ONE DOF SYSTEM A. Modeling of Arms, Object, and Operator Most master-slave systems consist of arms with multiple DOF. However, a one DOF system is considered in order to make the problem simple.
A bilateral teleoperation experiment with Engineering Test Satellite 7 (ETS-VII) was conducted on November 22, 1999. Round-trip time for communication between the National Space Development Agency of Japan ground station and the ETS-VII was approximately seven seconds. We constructed a bilateral teleoperator that is stable, even under such a long time delay. Several experiments, such as slope-tracing task and peg-in-hole task, were carried out. Task performance was compared between the bilateral mode and the unilateral mode with force telemetry data visually displayed on a screen. All tasks were possible by bilateral control without any visual information. Experimental results showed that kinesthetic force feedback to the operator is helpful even under such a long time delay, and improves the performance of the task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.