Triglyceride deposit cardiomyovasculopathy (TGCV) is a phenotype primarily reported in patients carrying genetic mutations in
PNPLA2
encoding adipose triglyceride lipase (ATGL) which releases long chain fatty acid (LCFA) as a major energy source by the intracellular TG hydrolysis. These patients suffered from intractable heart failure requiring cardiac transplantation. Moreover, we identified TGCV patients without
PNPLA2
mutations based on pathological and clinical studies
.
We provided the diagnostic criteria, in which TGCV with and without
PNPLA2
mutations were designated as primary TGCV (P-TGCV) and idiopathic TGCV (I-TGCV), respectively. We hereby report clinical profiles of TGCV patients. Between 2014 and 2018, 7 P-TGCV and 18 I-TGCV Japanese patients have been registered in the International Registry. Patients with I-TGCV, of which etiologies and causes are not known yet, suffered from adult-onset severe heart disease, including heart failure and coronary artery disease, associated with a marked reduction in ATGL activity and myocardial washout rate of LCFA tracer, as similar to those with P-TGCV. The present first registry-based study showed that TGCV is an intractable, at least at the moment, and heterogeneous cardiovascular disorder.
Complementary DNAs encoding the precursor of human placental short chain acyl-coenzyme A (CoA) dehydrogenase (SCAD) (EC 1.3.99.2) were cloned and sequenced. The cDNA inserts in these clones were 1,852 bases in length combined, and encoded the entire 412-amino acid precursor SCAD (mol wt 44,303). This sequence included the 24-amino acid leader peptide moiety (mol wt 2,576) and 388 amino acids corresponding to the mature protein (mol wt 41,727). The comparison of SCAD and medium chain acyl-CoA dehydrogenase sequences revealed a high degree of homology, suggesting that these enzymes evolved from a common ancestral gene and belong to a gene family. We also studied mutant human SCAD in cultured skin fibroblasts from three patients with hereditary SCAD deficiency. Labeling fibroblast cultures with i35Si-methionine followed by immunoprecipitation with anti-SCAD antibody revealed that a normal size variant SCAD protein was synthesized. In all of the three SCAD-deficient cell lines, the size of variant SCAD mRNA as determined by Northern blotting using one of the normal SCAD cDNA as a probe was also normal, and no difference was observed on Southern blots in the restriction patterns of mutant genomic DNA using EcoRI, TaqI, HincII, and BamHI. These results suggest that the defects in SCAD in these cell lines are caused by a point mutation.
Previously we have reported on siblings with severe hypercholesterolemia, xanthomas, and premature atherosclerosis without any impairment of low-density lipoprotein receptor in their fibroblasts as a first characterization of autosomal recessive hypercholesterolemia (ARH). Recently, mutations were identified for this disease in a gene encoding a putative adaptor protein. The purpose of this study was to examine the molecular pathogenesis of ARH in Japanese siblings. A novel insertion mutation was discovered in the ARH gene of the siblings. An insertion of an extra cytosine residue was identified in a locus comprising eight consecutive cytosines at positions 599 through 606 in exon 6, resulting in a sequence of nine cytosines and generating an early stop codon at 657-659. The mother was heterozygous for this mutation. Neither transcription product nor protein of ARH was detected in the fibroblasts of the homozygous patients. A single nucleotide polymorphism was discovered among the normal control subjects at position 604 (cytosine to thymine: ARH-604C to ARH-604T), which changes the proline residue at 202 to serine. Interestingly, ARH is caused by a mutation of cytosine to adenine at this same position. Both siblings exhibited fatty liver, which may also be related to this mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.