A 4-year-old male Japanese Shiba Inu presented with recurrent chylothorax. The thoracic duct was successfully imaged using computed tomography after the injection of an iodine contrast agent into the subcutaneous tissue surrounding the anus. The thoracic duct was successfully ligated and pericardectomy performed via an open thoracotomy. Pleural effusion improved but relapsed a week after the surgery. A second lymphography revealed a collateral thoracic duct that was not detected during the first lymphography. The collateral duct was ligated and chylothorax was resolved after the second surgery. The lymphography applied in this study was minimally-invasive and easily provided images of the thoracic duct in a dog with chylothorax.
Abstract. The purpose of this study is assessment of forces and torques required for robotic needle insertion to human vertebra. Axial forces during robotic insertion to human vertebrae fixed with formalin (water solution of formaldehyde(FA)) did not exceed 25 N when the feed rate was no more than 0.5 mm/s. There was relatively strong correlation between the axial force variation during insertion and the distribution of bone local CT-value along the needle path. This result shows the importance of preoperative X-ray CT image guidance for robotic needle insertion with safely small axial forces. There was no significant influence of FA-fixation on axial forces during robotic needle insertion to human femoral heads. The forces during robotic insertion to human femoral head were as small as less than 50 % of those during manual insertion, and which indicates that the robot can contribute to the safe needle insertion to human vertebra in percutaneous vertebroplasty.
Abstract. Percutaneous Vertebroplasty (PVP) is an effective and less invasive medical treatment for vertebral osteoporotic compression fractures. However, this operative procedure is quite difficult because an arcus vertebra, which is narrow, is needled with accuracy, and an operator's hand is exposed to X-ray continuously. We have developed a needle insertion robot for Percutaneous Vertebroplasty. Its experimental evaluation on the basic performance of the system and needle insertion accuracy are presented. A needle insertion robot is developed for PVP. This robot can puncture with accuracy and an operator does not need to be exposed to X-ray. The mechanism of the robot is compact in size (350 mm × D 400 mm × H270 mm, weight: 15 kg) so that the robot system can be inserted in the space between C-arm and the patient on the operating table. The robot system is controlled by the surgical navigation system where the appropriate needle trajectory is planned based on pre-operative three-dimensional CT images. The needle holding part of the robot is X-ray lucent so that the needle insertion process can be monitored by fluoroscopy. The position of the needle during insertion process can be continuously monitored. In vitro evaluation of the system showed that average position and orientation errors were less than 1.0 mm and 1.0 degree respectively. Experimental results showed that the safety mechanism called mechanical fuse released the needle holding disk properly when excessive force was applied to the needle. These experimental results demonstrated that the developed system has the satisfactory basic performance as needle insertion robot for PVP.
A novel laser guidance system that uses dual laser beam shooters for the alignment of linear surgical tools is presented. In the proposed system, the intersection of two laser planes generated by dual laser shooters placed at two fixed locations defines the straight insertion path of a surgical tool. The guidance information is directly projected onto the patient and the surgical tool. Our assumption is that a linear surgical tool has cylindrical shape or that a cylindrical sleeve is attached to the tool so that the sleeve and tool axes are aligned. The guidance procedure is formulated mainly using the property that the two laser planes are projected as two parallel straight lines onto the cylindrical tool surface if and only if the cylinder axis direction is the same as the direction of the intersection of the two laser planes. Unlike conventional augmented reality systems, the proposed system does not require the wearing of glasses or mirrors to be placed between the surgeon and patient. In our experiments, a surgeon used the system to align wires according to the alignment procedure, and the overall accuracy and alignment time were evaluated. The evaluations were considered not to be simply of a mechanical system but of a man-machine system, since the performance depends on both the system accuracy and the surgeon's perceptual ability. The evaluations showed the system to be highly effective in providing linear alignment assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.