Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm) complex on a reconstituted thin filament. We generated five single-cysteine mutants in the 146-174 region of rabbit skeletal muscle α-Tm. An energy donor probe was attached to a single-cysteine Tm residue, while an energy acceptor probe was located in actin Gln41, actin Cys374, or the actin nucleotide binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin and Tm, we searched all possible arrangements for Tm segment 146-174 on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of the Tm segment on the F-actin filament. Furthermore, we generated a set of five single-cysteine mutants in each of the four Tm regions 41-69, 83-111, 216-244, and 252-279. Using the same procedures, we determined each segment's location on the F-actin filament. In the best-fit model, Tm runs along actin residues 217-236, which were reported to compose the Tm binding site. Electrostatic, hydrogen-bonding, and hydrophobic interactions are involved in actin and Tm binding. The C-terminal region of Tm was observed to contact actin more closely than did the N-terminal region. Tm contacts more residues on actin without Ca(2+) than with it. Ca(2+)-induced changes on the actin-Tm contact surface strongly affect the F-actin structure, which is important for muscle regulation.
It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167-195 and the Tn core domain on F-actin with and without Ca(2+). The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I-T arm forms a four-helix-bundle structure with the Tm 175-185 region. After Ca(2+) release, the Tn core domain moves toward the actin outer domain and closer to the center of the F-actin axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.