Background and Purpose-Abnormal vascular remodeling triggered by hemodynamic stresses and inflammation is believed to be a key process in the pathophysiology of intracranial aneurysms. Numerous studies have shown infiltration of inflammatory cells, especially macrophages, into intracranial aneurysmal walls in humans. Using a mouse model of intracranial aneurysms, we tested whether macrophages play critical roles in the formation of intracranial aneurysms. Methods-Intracranial aneurysms were induced in adult male mice using a combination of a single injection of elastase into the cerebrospinal fluid and angiotensin II-induced hypertension. Aneurysm formation was assessed 3 weeks later. Roles of macrophages were assessed using clodronate liposome-induced macrophage depletion. In addition, the incidence of aneurysms was assessed in mice lacking monocyte chemotactic protein-1 (CCL2) and mice lacking matrix metalloproteinase-12 (macrophage elastase). Results-Intracranial aneurysms in this model showed leukocyte infiltration into the aneurysmal wall, the majority of the leukocytes being macrophages. Mice with macrophage depletion had a significantly reduced incidence of aneurysms compared with control mice (1 of 10 versus 6 of 10; PϽ0.05). Similarly, there was a reduced incidence of aneurysms in mice lacking monocyte chemotactic protein-1 compared with the incidence of aneurysms in wild-type mice (2 of 10 versus 14 of 20, PϽ0.05). There was no difference in the incidence of aneurysms between mice lacking matrix metalloproteinase-12 and wild-type mice. Conclusions-These
Background and Purpose An increasing number of unruptured intracranial aneurysms are being detected, partly due to the increased use of brain imaging techniques. Pharmacological stabilization of aneurysms for the prevention of aneurysmal rupture could potentially be an attractive alternative approach to clipping or coiling in patients with unruptured intracranial aneurysms. We have developed a mouse model of intracranial aneurysm that recapitulates key features of intracranial aneurysms. In this model, subarachnoid hemorrhage from aneurysmal rupture causes neurological symptoms that can be easily detected by a simple neurological examination. Using this model, we tested whether anti-inflammatory agents such as tetracycline derivatives, or a selective inhibitor of matrix metalloproteinases-2 and -9 (SB-3CT) can prevent the rupture of intracranial aneurysms. Methods Aneurysms were induced by a combination of induced hypertension and a single injection of elastase into the cerebrospinal fluid in mice. Treatment with minocycline, doxycycline, or SB-3CT was started six days after aneurysm induction. Aneurysmal rupture was detected by neurological symptoms and confirmed by the presence of intracranial aneurysm with subarachnoid hemorrhage. Results Minocycline and doxycycline significantly reduced rupture rates (vehicle vs. doxycycline = 80 vs. 35%, P < 0.05; vehicle vs. minocycline = 73 vs. 24%, P < 0.05) without affecting the overall incidence of aneurysms. However, SB-3CT did not affect the rupture rate (62 vs. 55%, P = 0.53). Conclusions Our data established the feasibility of using a mouse model of intracranial aneurysm to test pharmacological stabilization of aneurysms. Tetracycline derivatives could be potentially effective in preventing aneurysmal rupture.
Background and Purpose Systemic hypertension has long been considered as a risk factor of aneurysmal rupture. However, a causal link between systemic hypertension and the development of aneurysmal rupture has not been established. In this study, using a mouse model of intracranial aneurysm rupture, we examined the roles of systemic hypertension in the development of aneurysmal rupture. Methods Aneurysms were induced by a combination of deoxycorticosterone acetate (DOCA)-salt induced hypertension and a single injection of elastase into the cerebrospinal fluid in mice. Anti-hypertensive treatment was started six days after aneurysm induction. Aneurysmal rupture was detected by neurological symptoms and confirmed by the presence of intracranial aneurysm with subarachnoid hemorrhage. Hydralazine (direct vasodilator) or the discontinuation of the DOCA-salt treatment was used to assess the roles of systemic hypertension. Captopril (angiotensin converting enzyme inhibitor) or losartan (angiotensin II type 1 receptor antagonist) was used to assess the roles of the local renin-angiotensin system in the vascular wall. Results Normalization of blood pressure by hydralazine significantly reduced the incidence of ruptured aneurysms and the rupture rate. There was a dose dependent relationship between the reduction of blood pressure and the prevention of aneurysmal rupture. Captopril and losartan were able to reduce the rupture rates without affecting systemic hypertension induced by DOCA-salt treatment. Conclusions Normalization of blood pressure after aneurysm formation prevented aneurysmal rupture in mice. In addition, we found that the inhibition of the local renin-angiotensin system independent from the reduction of blood pressure can prevent aneurysmal rupture.
Background and Purpose-Intracerebral hemorrhage, induced by recombinant tissue plasminogen activator (rtPA) in ischemic stroke, is attributable to the increased activity of matrix metalloproteinase-9 (MMP-9). Patients with acute infarct benefit from the neuroprotective drug edaravone, a free radical scavenger. We examined the mechanisms by which edaravone may help to suppress rtPA-induced brain hemorrhage. Methods-Male Wistar rats weighing 250 to 280 g were subjected to 3-hour transient middle cerebral artery occlusion (MCAO) and divided randomly into 3 groups. Immediately after reperfusion, 1 group was intravenously injected with 10 mg/kg rtPA, another with rtPA plus 3 mg/kg edaravone, and the 3rd group received no treatment. We assessed the hemorrhage volume and the activity of MMP-9 in the brain 24 hours postischemia. We also studied the activity of MMP-9, its mRNA expression, and nuclear factor-kappa B (NF-B) activity in rtPA-stimulated human microvascular endothelial cells (HBECs). Results-The degree of hemorrhage and the level of endothelial cell-derived MMP-9 were elevated in rats treated with rtPA alone and attenuated in rats treated with rtPA plus edaravone. In rtPA-stimulated HBECs, edaravone suppressed the activity and mRNA expression of MMP-9 in a dose-dependent manner. Edaravone also inhibited NF-B activation. Conclusions-We demonstrate that edaravone inhibits rtPA-induced cerebral hemorrhage in the ischemic brain of rats via the inhibition of MMP-9 expression in vivo, which is substantiated by inhibition of MMP-9 expression and NF-B activation in HBECs. Edaravone may render thrombolytic therapy safer for the administration of rtPA in patients with ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.