Autologous split-thickness skin grafts are the preferred treatment for excised burn wounds, but donor sites for autografting are often limited in patients with extensive burns. A number of alternative treatments are already in use to treat large burns and ulcers. Despite intense efforts to develop tissue-engineered skin, delayed or absent vascularization is one of the major reasons for tissue-engineered skin engraftment failure. To overcome these problems, we developed a scaffold-free 3-dimensional (3D) skin substitute containing vascular networks that combine dermal fibroblasts, endothelial cells, and epidermal keratinocytes based on our layer-by-layer cell coating technique. We transplanted the pre-vascularized 3D skin substitutes onto full-thickness skin defects on severe combined immunodeficiency mice to assess their integration with the host tissue and effects on wound healing. We used non-vascularized 3D skin substitutes as a control. Vessels containing red blood cells were evident in the non-vascularized control by day 14. However, blood perfusion of the human-derived vasculature could be detected within 7 days of grafting. Moreover, the pre-vascularized 3D skin substitutes had high graft survival and their epidermal layers were progressively replaced by mouse epidermis. We propose that a novel dermo-epidermal 3D skin substitute containing blood vessels can promote efficient reconstruction of full-thickness skin defects.
Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane.
We previously developed a compact acoustic-resolution photoacoustic (PA) imaging system with optical fiber-based illumination, by which blood vessels in the rat skin were visualized in vivo. However, there were issues to be improved in the imaging characteristics: blurring in the out-of-focus region of the ultrasound sensor and degraded resolution due to low-frequency components in the PA signals. These are common limitations in acoustic-resolution PA imaging methods. In this study, we attempted to solve these problems by introducing signal processing methods based both on the synthetic-aperture focusing technique, which was applied only to signals in the detection zone of the sensor in the horizontal direction that was determined in advance in a phantom study, and on digital acoustic signal filtering with three specific frequency bands. Ex vivo and in vivo PA imaging of blood vessels in the rat skin and subcutaneous tissue showed the validity of the present signal processing methods.
Background and ObjectivesControl of burn wound infection is difficult due to the increase in drug‐resistant bacteria and deteriorated immune responses. In this study, we examined the usefulness of methylene blue (MB)‐mediated antimicrobial photodynamic therapy (aPDT) with illumination by a light‐emitting diode (LED) array for controlling invasive infections from the wound to inside the body for rats with an extended deep burn infected with Pseudomonas aeruginosa.Study Design/Materials and MethodsAn MB solution with the addition of ethanol, ethylene‐diamine‐tetra‐acetic acid disodium salt, and dimethyl sulfoxide was used as a photosensitizer (PS). An extended deep burn was made on the dorsal skin in rats and the wounds were infected with P. aeruginosa. The rats were divided into three groups: control (no treatment; n = 14), PS mixture application alone (PS alone group; n = 10), and aPDT group (n = 14). For aPDT, after the PS mixture was applied onto the surface of infected wounds, the wounds were illuminated with a 665‐nm LED array at an intensity of 45 mW/cm2 three times per treatment, with an illumination duration of 20 minutes and an interval of 10 minutes. The treatment was repeated each day for 7 consecutive days (day 0–day 6). Bacterial numbers on the wound surface and the weights and survival rates of the animals were evaluated daily. At the endpoints, bacterial numbers in the liver and blood were counted. Since the PS mixture showed high dark toxicity against P. aeruginosa in vitro, the influence of the PS mixture application onto healthy skin was also examined in vivo.ResultsEven in the aPDT group, rapid bacterial regrowth was observed on the wound surface after each day's treatment, but the geometric mean values of the bacterial numbers before and after each aPDT were considerably lower than those in the control group. Application of the PS mixture alone showed a clear bactericidal effect only at day 0, which is attributable to the formation of biofilms after day 1. Rats in the aPDT group showed a smaller weight loss, a higher ratio of no bacterial migration at the endpoints, and significantly higher survival rates than those in the other two groups. Effects of repeated application of the PS mixture onto healthy skin were not evident.ConclusionsApplication of MB‐mediated aPDT with illumination by a high‐intensity LED array daily for seven consecutive days was effective for suppressing invasive infection from the wound to inside the body in rats with an extensive deep burn infected with P. aeruginosa, resulting in significant improvement of their survival. Lasers Surg. Med. © 2021 Wiley Periodicals LLC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.