This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
a b s t r a c tHospital and healthcare facilities have diverse indoor environment due to the different comfort and health needs of its occupants. Currently, most ventilation studies revolve around specialised areas such as operating rooms and isolation rooms. This paper focuses on the ventilation of multiple-bed hospital wards in the tropical climate, taking into account the design, indoor conditions and engineering controls. General ward layouts are described briefly. The required indoor conditions such as temperature, humidity, air movements and indoor air quality in the ward spaces are summarized based on the current guidelines and practices. Also, recent studies and engineering practices in the hospital indoor environment are elaborated. Usage of computational fluid dynamics tools for the ventilation studies is discussed as well. As identified during the review, there is an apparent knowledge gap for ventilation studies in the tropics compared with temperate climates, as fact studies have only been published for hospital wards in countries with a temperate climate. Therefore, it is highlighted that specific tropical studies along with novel engineering controls are required in addressing the ventilation requirements for the tropics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.