This paper presents an evaluation of a new biometric electrocardiogram (ECG) for individual authentication. We report the potential of ECG as a biometric and address the research concerns to use ECG-enabled biometric authentication system across a range of conditions. We present a method to delineate ECG waveforms and their end fiducials from each heartbeat. A new authentication strategy is proposed in this work, which uses the delineated features and taking decision for the identity of an individual with respect to the template database on the basis of match scores. Performance of the system is evaluated in a unimodal framework and in the multibiometric framework where ECG is combined with the face biometric and with the fingerprint biometric. The equal error rate (EER) result of the unimodal system is reported to 10.8%, while the EER results of the multibiometric systems are reported to 3.02% and 1.52%, respectively for the systems when ECG combined with the face biometric and ECG combined with the fingerprint biometric. The EER results of the combined systems prove that the ECG has an excellent source of supplementary information to a multibiometric system, despite it shows moderate performance in a unimodal framework. We critically evaluate the concerns involved to use ECG as a biometric for individual authentication such as, the lack of standardization of signal features and the presence of acquisition variations that make the data representation more difficult. In order to determine large scale performance, individuality of ECG remains to be examined
This paper presents the effectiveness of bioelectrical signals such as the electrocardiogram (ECG) and the electroencephalogram (EEG) for biometric applications. Studies show that the impulses of cardiac rhythm and electrical activity of the brain recorded in ECG and EEG, respectively; have unique features among individuals, therefore they can be suggested to be used as biometrics for identity verification. The favourable characteristics to use the ECG or EEG signals as biometric include universality, measurability, uniqueness and robustness. In addition, they have the inherent feature of vitality that signifies the life signs offering a strong protection against spoof attacks. Unlike conventional biometrics, the ECG or EEG is highly confidential and secure to an individual which is difficult to be forged. We present a review of methods used for the ECG and EEG as biometrics for individual authentication and compare their performance on the datasets and test conditions they have used. We illustrate the challenges involved in using the ECG or EEG as biometric primarily due to the presence of drastic acquisition variations and the lack of standardization of signal features. In order to determine the large-scale performance, individuality of the ECG or EEG is another challenge that remains to be addressed.
In wireless sensor networks (WSNs) having a high density of sensor nodes, transmitted measurements are spatially correlated, often redundantly whenever an event of interest is detected. In this work, the authors propose a correlation model to enable energy-efficient methodologies that exploit the spatial correlation at the network and medium access control (MAC) layers. At the network layer, the authors first demonstrate how, through proper tuning of both the sensing range and correlation threshold, WSNs can be partitioned into disjoint correlated clusters without degrading the information reliability, thus enabling significant energy saving. On the other hand, as another contribution, the authors investigate the impacts of correlation between nodes on achieved distortion in the event estimation at the sink. The interactions among various parameters such as distortion constraints, spatial node density, node selection, sensing range and their impacts on the reconstruction performance are quantitatively studied. The authors demonstrate that the same level of distortion constraint can be achieved by selecting fewer nodes. The nodes can be still fewer if they are less spatially correlated. However, the MAC protocols which show distributive effect of this selection needs more study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.