Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg) alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.
Using the linear response theory, the vibrational and dielectric properties are calculated for c-BN, w-BN and h-BN. Calculations of the zone-center optical-mode frequencies (including LO-TO splittings) are reported. All optic modes are identified and agreement of theory with experiment is excellent. The static dielectric tensor is decomposed into contributions arising from individual infrared-active phonon modes. It is found that all of the structures have a smaller lattice dielectric constant than that of electronic contribution. Finally, the infrared reflectance spectrums are presented. Our theoretical results indicate that w-BN shows a similar reflectivity spectrum as c-BN. It is difficult to tell the wurtzite structure from the zinc blende phase by IR spectroscopy.
A study is presented of an improved interfacial structure between the electrode and electrolyte of a solid oxide fuel cell. An imprint process, which is considered as a powerful tool to transcribe nano to micropatterns on materials, was employed to imprint fine patterns onto a ceramic sheet of electrolyte. In the presented work, a sheet of ceramic compound material was prepared, and micropatterns were imprinted on its surface. After debinding and sintering, a dense ceramic sheet with fine micropatterns was obtained. To investigate the effect of micropatterns on the overall performance of a fuel cell, three kinds of electrolyte sheets with different surface patterns were employed for this technique. After applying anode and cathode layers, the three fuel cell samples were assembled to test the cell performance. The result was that the finer pattern caused better performance in the three samples by exhibiting the highest overall voltage and power density, and the effective factors of patterns on ion conductivity were discussed as well. Based on the investigation, some further improved three-dimensional microstructures were proposed and fabricated by the method of micro powder imprinting (μPI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.