Albeit much less abundant than Ser/Thr phosphorylation (pSer/pThr), Tyr phosphorylation (pTyr) is considered as a hallmark in cellular signal transduction. However, its analysis at the proteome level remains challenging. The conventional immunopurification (IP) approach using antibodies specific to pTyr sites is known to have low sensitivity, poor reproducibility and high cost. Our recent study indicated that SH2 domain-derived pTyr-superbinder is a good replacement of pTyr antibody for the specific enrichment of pTyr peptides for phosphoproteomics analysis. In this study, we presented an efficient SH2 superbinder based workflow for the sensitive analysis of tyrosine phosphoproteome. This new method can identify 41% more pTyr peptides than the previous method. Its excellent performance was demonstrated by the analysis of a variety of different samples. For the highly tyrosine phosphorylated sample, for example, pervanadate-treated Jurkat T cells, it identified over 1800 high confident pTyr sites from only 2 mg of proteins. For the unstimulated Jurkat cells, where the pTyr events rarely occurred, it identified 343 high confident pTyr sites from 5 mg of proteins, which was 31% more than that obtained by the antibody-based method. For the heterogeneous sample of tissue, it identified 197 high confident pTyr sites from 5 mg protein digest of mouse skeletal muscle. In general, it is a sensitive, robust and cost-effective approach and would have wide applications in the study of the regulatory role of tyrosine phosphorylation in diverse physiological and pathological processes.
Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.