Farming was first introduced to Europe in the mid-7th millennium BCE–associated with migrants from Anatolia who settled in the Southeast before spreading throughout Europe. To understand the dynamics of this process, we analyzed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12,000 and 500 BCE. We document a West-East cline of ancestry in indigenous hunter-gatherers and–in far-eastern Europe–early stages in the formation of Bronze Age Steppe ancestry. We show that the first farmers of northern and western Europe passed through southeastern Europe with limited hunter-gatherer admixture, but that some groups that remained mixed extensively, without the male-biased hunter-gatherer admixture that prevailed later in the North and West. Southeastern Europe continued to be a nexus between East and West, with intermittent genetic contact with the Steppe up to 2000 years before the migrations that replaced much of northern Europe’s population.
Farming was first introduced to southeastern Europe in the mid-7th millennium BCE – brought by migrants from Anatolia who settled in the region before spreading throughout Europe. To clarify the dynamics of the interaction between the first farmers and indigenous hunter-gatherers where they first met, we analyze genome-wide ancient DNA data from 223 individuals who lived in southeastern Europe and surrounding regions between 12,000 and 500 BCE. We document previously uncharacterized genetic structure, showing a West-East cline of ancestry in hunter-gatherers, and show that some Aegean farmers had ancestry from a different lineage than the northwestern Anatolian lineage that formed the overwhelming ancestry of other European farmers. We show that the first farmers of northern and western Europe passed through southeastern Europe with limited admixture with local hunter-gatherers, but that some groups mixed extensively, with relatively sex-balanced admixture compared to the male-biased hunter-gatherer admixture that prevailed later in the North and West. Southeastern Europe continued to be a nexus between East and West after farming arrived, with intermittent genetic contact from the Steppe up to 2,000 years before the migration that replaced much of northern Europe’s population.
. Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia. Physics of the Earth and Planetary Interiors, Elsevier, 2014, 236, pp.79-94
Ancient DNA traces the history of hepatitis B Hepatitis B virus (HBV) infections represent a worldwide human health concern. To study the history of this pathogen, Kocher et al . identified 137 human remains with detectable levels of virus dating between 400 and 10,000 years ago. Sequencing and analyses of these ancient viruses suggested a common ancestor between 12,000 and 20,000 years ago. There is no evidence indicating that HBV was present in the earliest humans as they spread out of Africa; however, HBV was likely present in human populations before farming. Furthermore, the virus was present in the Americas by about 9000 years ago, representing a lineage sister to the viral strains found in Eurasia that diverged about 20,000 years ago. —LMZ
Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.