In this proposal, microcontroller-based energy flow control was designed in order to effectively and efficiently enable the use of energy sources in a hybrid energy generation system including wind, solar, and hydrogen energy. It was assumed that the hybrid energy generation system is dynamic during the design of the microcontroller-based energy flow control. A wind-solar energy generation system was determined as the base load power plant. Depending on the demand, the battery group and fuel cell were activated effectively. If an energy surplus occurred, it was stored in battery groups and transformed into hydrogen energy via a hydrogen generator simultaneously. In addition to providing energy sustainability, a constant active status of the energy storage group was prevented and the physical life of the group was prolonged by means of the microcontroller-based control system. If consumer demand could not be met by the main energy sources including wind and solar energy, the battery groups and fuel cell were activated and provided the energy sustainability. After a certain level of charge was reached in the battery group, it was deactivated via the control system in order to prevent unnecessary use of energy. By means of the microcontroller-based control system, the usage of energy generated with the hybrid energy generation system was analysed according to its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.