While trying to optimize sharp distillation processes, the number of possible column sequences significantly increases as the number of components that make up the feed mixture increases. As a result, proper sequencing with maximum exergetic profit and minimum exergy destruction becomes harder to achieve. In this study, an exergoeconomic multi-objective optimization was applied to the distillation sequences of three separate hydrocarbon mixture cases, by means of a genetic-algorithm-based solver software. A computer program (DISMO) was developed in-house to achieve this functionality. The results indicate that the created algorithm was quite applicable in determining the optimum sequencing in distillation, as it successfully created the Pareto Solution Set and suggested the optimum configurations. This study also presented an opportunity to conduct a parametric investigation on various weighting factors for objective functions. As the importance given to a specific objective was increased, the optimization results had a tendency to favour that specific objective through arrangement of sequencing as expected, though the profit and sequencing converged to a single result after a certain threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.