Zinc dithiophosphate is the most commonly used antiwear additive in lubricating oil. However, zinc dithiophosphate has a poisoning effect on engine catalysis via phosphorus and zinc content that reduces the efficiency causing hazardous emission increase, therefore, it needs to be replaced with an alternative additive. In this study, the antiwear performance of molybdenum disulfide (MoS2) is enhanced by zinc sulfate (ZnSO4) addition and subjected to tribometer tests at different contact pressures to explore the MoS2 + ZnSO4friction and antiwear performance against MoS2and zinc dithiophosphate. Wear rates and surface morphology changes were carried out by an optical microscope, optical profilometer, and atomic force microscope analysis. Furthermore, tribochemical and surface energies of tribofilms were evaluated via scanning electron microscope/energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscope adhesion force mapping analysis. Results showed that ZnSO4addition to MoS2 + base oil improves the antiwear performance of the lubricating oil significantly and it presents similar friction characteristics to zinc dithiophosphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.