The elastic stress field for multiple ellipsoidal inhomogeneous inclusions in one of two perfectly bonded semi-infinite solids subjected to external stress is investigated by the modified equivalent inclusion method. Using the general solution for the inhomogeneous inclusion in bimaterial expressed in terms of Garlekin stress vectors, the potential functions necessary to solve the problem are obtained. The elastic field induced by multiple inclusions in dissimilar media could be found from the superposition of the separate solutions of individual precipitate. The effects of the planner interface with parameters of depth from the interface and both pairs of elastic moduli and also shapes of the inclusion on the solution are given as numerical example, which is of great significance in physical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.