The three-dimensional structure of rice nonspecific lipid transfer protein (nsLTP2) has been solved for the first time. The structure of nsLTP2 was obtained using 813 distance constraints, 30 hydrogen bond constraints, and 19 dihedral angle constraints. Fifteen of the 50 random simulated annealing structures satisfied all of the constraints and possessed good nonbonded contacts. The novel three-dimensional fold of rice nsLTP2 contains a triangular hydrophobic cavity formed by three prominent helices. The four disulfide bonds required for stabilization of the nsLTP2 structure show a different pattern of cysteine pairing compared with nsLTP1. The C terminus of the protein is very flexible and forms a cap over the hydrophobic cavity. Molecular modeling studies suggested that the hydrophobic cavity could accommodate large molecules with rigid structures, such as sterols. The positively charged residues on the molecular surface of nsLTP2 are structurally similar to other plant defense proteins. Plant nonspecific lipid transfer proteins (nsLTPs)1 have been isolated from a number of plant species including wheat, rice, and barley (1). NsLTPs enhance the intermembrane exchange or transfer of lipid molecules in vitro (2). Biotic and abiotic stresses stimulate nsLTP gene expression (3-5). NsLTPs are known to be involved in the formation of a protective hydrophobic layer over the plant surfaces (5). Despite their ability to help plants to manage stress, the exact mechanism of transport is still unclear. NsLTPs are also involved in other biological activities such as flowering and transportation of cutin and suberin monomers (6). NsLTPs present in cereals play an important role in food chemistry. NsLTPs directly affect dough rheology and breadcrumb texture (6). Reports about the isolation of glycosylated and reduced nsLTP fragments from beer suggest that nsLTPs are involved in froth formation during the malting and brewing processes (7).NsLTPs are divided into two subfamilies, nsLTP1 (molecular mass ϳ9 kDa) and nsLTP2 (molecular mass ϳ7 kDa) (2). NsLTP1 is found primarily in aerial organs, whereas nsLTP2 is expressed in roots. Interestingly, both nsLTP1 and nsLTP2 are found in seeds. NsLTP1 is proposed to transport cutin monomers, whereas nsLTP2 is involved in the transport of the more rigid suberin monomers (6). Three-dimensional structures of nsLTP1 from various sources were determined by x-ray and NMR spectroscopic techniques (8). All nsLTP1s share a common structural fold stabilized by four disulfide bonds. The prominent four helices of nsLTP1 are packed against a flexible C-terminal arm formed by a series of turns. In contrast to many globular proteins, the hydrophobic side chains of nsLTP1 do not form a rigid hydrophobic core but instead form a hydrophobic cavity at the interior of the protein. Recently, we have purified nsLTP2 from rice. The amino acid sequence, disulfide bond pattern and stability have been determined (TrEMBL ID P83210) (9). Rice nsLTP2 contains 69 residues and has less than 30% sequence identity wi...
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity. We report herein the nuclear magnetic resonance solution structure of VrD1 and the implication on its insecticidal activity. The root-mean-square deviation values are 0.51 +/- 0.35 and 1.23 +/- 0.29 A for backbone and all heavy atoms, respectively. The VrD1 structure comprises a triple-stranded antiparallel beta-sheet, an alpha-helix, and a 3(10) helix stabilized by four disulfide bonds, forming a typical cysteine-stabilized alphabeta motif. Among plant defensins of known structure, VrD1 is the first to contain a 3(10) helix. Glu26 is highly conserved among defensins; VrD1 contains an arginine at this position, which may induce a shift in the orientation of Trp10, thereby promoting the formation of this 3(10) helix. Moreover, VrD1 inhibits Tenebrio molitor alpha-amylase. Alpha-amylase has an essential role in the digestion of plant starch in the insect gut, and expression of the common bean alpha-amylase inhibitor 1 in transgenic pea imparts complete resistance against bruchids. These results imply that VrD1 insecticidal activity has its basis in the inhibition of a polysaccharide hydrolase. Sequence and structural comparisons between two groups of plant defensins having different specificity toward insect alpha-amylase reveal that the loop between beta2 and beta3 is the probable binding site for the alpha-amylase. Computational docking experiments were used to study VrD1-alpha-amylase interactions, and these results provide information that may be used to improve the insecticidal activity of VrD1.
Plant nonspecific lipid transfer proteins (nsLTPs) are small basic proteins that transport phospholipids between membranes. On the basis of molecular mass, nsLTPs are subdivided into nsLTP1 and nsLTP2. NsLTPs are all helical proteins stabilized by four conserved disulfide bonds. The existence of an internal hydrophobic cavity, running through the molecule, is a typical characteristic of nsLTPs that serves as the binding site for lipid-like substrates. NsLTPs are known to participate in plant defense, but the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. To trigger plant defense responses, a receptor at the plant surface needs to recognize the complex of a fungal protein (elicitin) and ergosterol. NsLTPs share high structural similarities with elicitin and need to be associated with a hydrophobic ligand to stimulate a defense response. In this study, binding of sterol molecules with rice nsLTPs is analyzed using various biophysical methods. NsLTP2 can accommodate a planar sterol molecule, but nsLTP1 binds only linear lipid molecules. Although the hydrophobic cavity of rice nsLTP2 is smaller than that of rice nsLTP1, it is flexible enough to accommodate the voluminous sterol molecule. The dissociation constant for the nsLTP2/cholesterol complex is approximately 71.21 microM as measured by H/D exchange and mass spectroscopic detection. Schematic models of the nsLTP complex structure give interesting clues about the reason for differential binding modes. Comparisons of NMR spectra of the sterol/rice nsLTP2 complex and free nsLTP2 revealed the residues involved in binding.
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcԑRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)–knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.