The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide 1 . No approved antivirals are available to date, and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates 2 . Hepatitis C virus (HCV) also remains a major medical problem, with 160 million chronically infected patients worldwide and only expensive treatments available 3 . Despite distinct differences in their pathogenesis and modes of transmission, the two viruses share common replication strategies 4 . A detailed understanding of the host functions that determine viral infection is lacking. Here we use a pooled CRISPR genetic screening strategy 5,6 to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified endoplasmic-reticulum (ER)-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER-associated degradation. DENV replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as the crucial step requiring the OST complex. Moreover, we show that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for infection by other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects 7 . By contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA-binding proteins and enzymes involved in metabolism. We found an unexpected link between intracellular flavin adenine dinucleotide (FAD) levels and HCV replication. This study shows notable divergence in hostdependency factors between DENV and HCV, and illuminates new host targets for antiviral therapy.CRISPR is revolutionizing the use of genetic screens because the ability to completely knockout genes substantially increases the robustness of the phenotypes 5,6 . We compared the CRISPR approach in the hepatocyte cell line Huh7.5.1 with an alternative method to generate knockout alleles on a genome-wide scale: insertional mutagenesis in human haploid cells (HAP1) 8,9 (Fig. 1a). Both methods generate libraries of cells with knockout mutations in all non-essential genes. To comprehensively identify cellular genes with crucial roles in the Flaviviridae life cycles, we first infected pools of mutagenized cells with DENV serotype 2 (DENV-2). The two types of genetic screening methods showed a strong concordance in the genes enriched in the DENV-2-resistant population. Many could be functionally classified into three distinct categories, each important for proper expression of ER-targeted glycoproteins (Fig. 1b, c, Supplementary Tables 1, 2). The translocon associated protein (TRAP) complex (containing subunits SSR1, SSR2 ...
For over fifty years, the methylation of mammalian actin at histidine 73 (actin-H73me) has been known to exist 1 . Beyond mammals, we find that actin-H73me is conserved in several additional model animal and plant organisms. Despite the pervasiveness of H73me, its function is enigmatic, and the enzyme generating this modification is unknown. Here, we identify SETD3 ( SET d omain protein 3 ) as the physiologic actin histidine 73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide on the SETD3 surface to properly orient H73 within the catalytic pocket and facilitate methyl transfer. H73me reduces the nucleotide exchange rate on actin monomers and modestly accelerates actin filament assembly. Mice lacking SETD3 show complete loss of actin-H73me in multiple tissues and quantitative proteomics singles out actin-H73 as the principal physiologic SETD3 substrate. SETD3 deficient female mice have severely decreased litter sizes due to primary maternal dystocia that is refractory to ecbolic induction agents. Further, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify the first mammalian protein histidine methyltransferase and uncover a pivotal role for SETD3 and actin-H73me in the regulation of smooth muscle contractility. Our data also support the broader hypothesis where protein histidine methylation acts as a common regulatory mechanism.
Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets.
Flaviviruses including dengue virus (DENV) and Zika virus (ZIKV) cause significant human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum (ER) is a shared replication strategy, despite different clinical outcomes. While the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.