The photonic orbital Hall effect (POHE) refers to the vortex-dependent beam shifts, which is generally believed to result from the conversion of intrinsic orbital angular momentum (IOAM) to extrinsic orbital angular momentum (EOAM). However, the physical mechanism of the POHE, such as how the IOAM is converted to the EOAM, remains further elucidation. In this paper, we re-examine the POHE of a vortex beam with additional IOAM illuminating at an optically thin slab by means of vortex mode decomposition. By considering the competition and coupling between the radial and azimuthal vortex harmonics of the abnormal mode in the transmitted beam, it is found that the underlying mechanism of the POHE is in fact a spin-to-orbital angular momentum conversion process. And the IOAM carried by the incident beam is directly superimposed on the orbital angular momentum obtained during the conversion. Our findings not only offer an alternative perspective for understanding the POHE, but also exhibit application potential in orbit-orbit and spin-orbit optical components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.