In the present study, calcium propionate (CaP) was used as feed additive in the diet of calves to investigate their effects on rumen fermentation and the development of rumen epithelium in calves. To elucidate the mechanism in which CaP improves development of calf rumen epithelium via stimulating the messenger RNA (mRNA) expression of G protein-coupled receptors, a total of 54 male Jersey calves (age=7±1 days, BW=23.1±1.2 kg) were randomly divided into three treatment groups: control without CaP supplementation (Con), 5% CaP supplementation (5% CaP) and 10% CaP supplementation (10% CaP). The experiment lasted 160 days and was divided into three feeding stages: Stage 1 (days 0 to 30), Stage 2 (days 31 to 90) and Stage 3 (days 91 to 160). Calcium propionate supplementation percentages were calculated on a dry matter basis. In total, six calves from each group were randomly selected and slaughtered on days 30, 90 and 160 at the conclusion of each experimental feeding stage. Rumen fermentation was improved with increasing concentration of CaP supplementation in calves through the first 30 days (Stage 1). No effects of CaP supplementation were observed on rumen fermentation in calves during Stage 2 (days 31 to 90). Supplementation with 5% CaP increased propionate concentration, but not acetate and butyrate in calves during Stage 3 (days 91 to 160). The rumen papillae length of calves in the 5% CaP supplementation group was greater than that of Con groups in calves after 160 days feeding. The mRNA expression of G protein-coupled receptor 41 (GPR41) and GPR43 supplemented with 5% CaP were greater than the control group and 10% CaP group in feeding 160 days calves. 5% CaP supplementation increased the mRNA expression of cyclin D1, whereas did not increase the mRNA expression of cyclin-dependent kinase 4 compared with the control group in feeding 160-day calves. These results indicate that propionate may act as a signaling molecule to improve rumen epithelium development through stimulating mRNA expression of GPR41 and GPR43.
Exploring the compositional characteristics of rumen eukaryotic community can expand our understanding of their role in rumen function and feed efficiency. In this study, we applied metatranscriptomics to characterize the active rumen eukaryotic community (protozoa and fungi) in beef cattle (n = 48) of three breeds [Angus (AN), Charolais (CH), and Kinsella Composite (KC)] and with divergent residual feed intake (RFI). The composition of active rumen eukaryotic microbiota was evaluated based on enriched 18S rRNAs from the metatranscriptomic datasets. At the phylum level, a total of four protozoal taxa (Ciliophora, Parabasalia, unclassified SAR, and unclassified Alveolata), six fungal taxa (Neocallimastigomycota, Basidiomycota, unclassified Fungi, Mucoromycota, Ascomycota, and Chytridiomycota), and one sister group of kingdom Fungi (unclassified Opisthokonta) were detected with relative abundances higher than 0.01% and in at least 50% of animals within each breed. Among these, Ciliophora, Parabasalia, unclassified Opisthokonta, and Neocallimastigomycota were the top four active eukaryotic phyla. At the genus level, a total of 8 ciliated protozoa, 5 flagellated protozoa, 5 anaerobic fungi, and 10 aerobic fungi taxa were detected, with unclassified Trichostomatia, Tetratrichomonas, unclassified Neocallimastigaceae, and Pleurotus being the most predominant taxa of ciliated protozoa, flagellated protozoa, anaerobic fungi, and aerobic fungi, respectively. Differential abundance analysis revealed that breed had a significant effect on the phylogenetic lineages of rumen eukaryotes, and seven fungal taxa were more abundant (linear discriminant analysis score > 2 with P < 0.05) in the rumen of KC steers than in the rumen of AN and CH steers. Although principal coordinate analysis (PCoA) revealed that the ruminal active eukaryotic profiles were not distinguishable between high-and low-RFI groups, the diversity indices, including Faith's phylogenetic diversity (PD), observed operational taxonomic units (OTUs), and Shannon index of rumen eukaryotes were higher in low-RFI steers than those in high-RFI steers. Meanwhile, the abundance of genus Entodinium and the kingdom Fungi was higher in low-RFI steers than that in high-RFI steers. This information on active rumen eukaryotic microbiota and identified differential abundance of taxa between high-and low-RFI animals suggests the possibility of improving feed efficiency through altering rumen eukaryotic microbiota.
The objective of this trial was to study the influence of dietary fiber sources on the gastrointestinal fermentation, digestive enzyme activity, and mucosa morphology of growing Greylag geese. In total, 240 Greylag geese (28-day-old) were allocated to 4 treatments (15 pens/treatment) differing in dietary fiber source: corn straw silage (CSS group), steam-exploded corn straw (SECS group), steam-exploded wheat straw (SEWS group), or steam-exploded rice straw (SERS group). At 112 days of age, 15 birds per group were euthanized to collect samples. No difference (P > 0.05) was found on all the gastrointestinal pH values and ammonia-nitrogen concentrations between the groups. The CSS and SERS groups had a lower (P < 0.05) proportion of acetic acid in the gizzard than the SECS and SEWS groups. The CSS group had a higher VFA concentration in the jejunum (P < 0.05) and acetic acid proportion (P < 0.01) in the ceca, and a lower (P < 0.01) butyric acid proportion than the other groups except for the SECS group. The SECS group had a higher (P < 0.01) acetic acid proportion and lower (P < 0.05) proportions of propionic acid and valeric acid in the ceca than the SEWS and SERS groups. Different fiber sources resulted in different VFA profiles, especially in the gizzard and ceca. Almost all gastrointestinal protease activities of the CSS group were higher (P < 0.05) than the other groups, along with lower (P < 0.01) amylase activities in the duodenum, jejunum, ileum, and ceca. Lipase activity in proventriculus was highest (P < 0.01) in the SEWS group and its cecal activity was lower (P < 0.01) in the SECS and SEWS groups than the CSS and SERS groups with a higher (P < 0.01) lipase activity in the CSS group than the SERS group. The SECS and SERS groups had a higher cellulase activity in the ceca than the CSS and SEWS groups, with a higher (P < 0.01) rectal cellulase activity in the SERS group than the other groups. There was no significant effect (P > 0.05) on the intestinal mucosa morphology. These results suggest that corn straw silage improves protein digestion while steam-exploded straw provides more energy.
Aims: To investigate the changes in fermentation quality of whole-plant corn silage ensiled with varying dosages of mixed organic acid salts (MS), and link these dosage changes to shifts in bacterial composition. Methods and Results: Fermentation quality and bacterial community of corn silage ensiled with MS at four application rates (0, 0Á67 g kg À1 , 1Á33 g kg À1 , and 2Á00 g kg À1 ) were investigated. The MS consisted of 40% potassium sorbate and 60% sodium benzoate. The corn silages were conserved for 42 days. Dry matter losses and ammonia nitrogen concentration were linearly declined by up to 19Á10 and 33Á3% with increasing dosages of MS. MS treatments significantly reduced the pH of silage vs the control group. Further analysis indicated that the improvement of fermentation quality was the result of shifts in bacterial composition, the relative abundance of Lactobacillus paralimentarius and Pediococcus spp. increased while Lactobacillus reuteri, Lactobacillus coryniformis and Klebsiella declined with increasing dosages of MS. Conclusions: MS effectively improved the fermentation quality of whole-plant corn silage with an optimum dosage of 2Á00 g kg À1 .Significance and Impact of the Study: The correlation between bacterial taxa and fermentation quality provides a potential for the development of novel silage inoculants and for the application of MS on controlling Klebsiella mastitis of livestock farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.