How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Novel classical wave phenomenon analogs of the quantum spin Hall effect are mostly based on the construction of pseudo-spins. Here we show that the non-trivial topology of a system can also be realized using orbital angular momentum through a coupling between the angular momentum and the wave vector. The idea is illustrated with a tight-binding model and experimentally demonstrated with a transmission line network. We show experimentally that even a very small network cluster exhibits angular momentum-dependent one-way topological edge states, and their properties can be described in terms of local Chern numbers. Our work provides a new mechanism to realize counterparts of the quantum spin Hall effect in classical waves and may offer insights for other systems.
Layered heavy-metal square-lattice compounds have recently emerged as potential Dirac fermion materials due to bonding within those sublattices. We report quantum transport and spectroscopic data on the layered Sb square-lattice material LaCuSb2. Linearly dispersing band crossings, necessary to generate Dirac fermions, are experimentally observed in the electronic band structure observed using angle-resolved photoemission spectroscopy (ARPES), along with a quasi-two-dimensional Fermi surface. Weak antilocalization that arises from two-dimensional transport is observed in the magnetoresistance, as well as regions of linear dependence, both of which are indicative of topologically non-trivial effects. Measurements of the Shubnikovde Haas (SdH) quantum oscillations show low effective mass electrons on the order of 0.065me, further confirming the presence of Dirac fermions in this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.