Enhanced oil recovery (EOR) is a crucial technology in the petroleum industry, influenced by several factors, including flooding fluids and methods. The adjustment of injection strategies and the application of vibration stimulation can significantly impact oil recovery, especially residual oil. In this study, we conducted experiments using a glass micromodel to investigate the effect of pulsing water injection on oil recovery. Our results show that when the pulse frequency matches the natural frequency of the micromodel, resonance occurs during the two-phase flow of pulse driving, which causes an increase in the amplitude of oscillation, enhances the mobility of oil, and improves recovery. The efficiency of the kinetic energy of displacement is also improved. However, when the frequency is 3 Hz, the absence of resonance leads to the opposite effect. In addition, we found that a greater amplitude increases the fluidity of oil. These findings have significant implications for the design of EOR strategies and methods. Our experimental results provide insight into the effect of pulse water injection on oil recovery and offer a potential strategy for the optimization of EOR techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.