β-NaYF 4 :Yb,Er nanoparticles (NPs) are one of the most efficient upconversion materials, which can convert near-infrared light to higher-energy light through multiple photon absorptions or energy transfer. In addition, they may be attractive alternative donors for luminescence resonance energy transfer (LRET) studies, because of their sharp absorption and emission profiles, high quantum yields, large anti-stokes shifts, long lifetime, low toxicity, and superior photo-stability. In principle, many problems of fluorescence resonance energy transfer (FRET), such as excitation of acceptors, emission overlaps between donors and acceptors, high background noise, potential toxicity, and instability, can be overcome using β-NaYF 4 :Yb,Er NPs as energy donors. Because the organic coating induced separation can significantly reduce the energy transfer efficiency and aqueous FRET system is difficult to be applied in devices, we demonstrate a novel NP-dye LRET system in solid state. The emission of the β-NaYF 4 :Yb,Er NPs at 539 nm overlaps with the absorption of the tetrametrylrhodarnine isothiocyante (TRITC), satisfying the requirement of LRET process. Since TRITC molecules are adsorbed on the β-NaYF 4 :Yb,Er NPs by an electrostatic interaction, the interaction distance is suitable for LRET without any further modulation. The resultant solid LRET system is ready for the further applications for devices.
Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992, increasing attention has been focused on the design and synthesis of mesostructured functional materials. Organic functionalization is becoming a major topic in this research field, since highly ordered mesostructured organic-inorganic hybrids offer novel functionalities and enhanced performance over their individual components. We begin with a brief overview of the three fundamental methods (post-synthetic grafting technique, co-condensation method, and preparation of periodic mesoporous organosilicas) for the preparation of organically functionalized mesostructured silica, and focus on one of the most promising approaches, which herein was named as functional-template directed self-assembly (FTDSA) approach, and in the eyes of the authors it has a special position in the preparation of this class of hybrid materials. A comprehensive overview of the state of research in the area of FTDSA and its potential applications will be given. mesoporous materials, self-assembly, organic-inorganic hybrids
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.