In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of 1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.
BackgroundPlants are oftentimes exposed to many types of abiotic stresses. Drought is one of the main environmental stresses which limits plant growth, distribution and crop yield worldwide. Amygdalus mira (Koehne) Yü et Lu is an important wild peach, and it is considered an ideal wild peach germplasm for improving cultivated peach plants. Because of the loss of genetic variation, cultivated peach plants are sensitive to biotic and abiotic stresses. Wild peach germplasm can offer many useful genes for peach improvement. Responses to drought by withholding water have been studied in Amygdalus mira (Koehne) Yü et Lu roots. In this study, plants were divided into well-watered (control) and water-stressed (treatment) groups, and the treatment group did not receive water until the recovery period (day 16).ResultsSeveral physiological parameters, including root water content and root length, were reduced by drought stress and recovered after rewatering. In addition, the relative conductivity, the levels of proline, MDA and H2O2, and the activities of ROS scavenging enzymes (POD, APX and CAT) were increased, and none of these factors, except the level of proline, recovered after rewatering. In total, 95 differentially expressed proteins were revealed after drought. The identified proteins refer to a extensive range of biological processes, molecular functions and cellular components, including cytoskeleton dynamics (3.16% of the total 95 proteins), carbohydrate and nitrogen metabolism (6.33% of the total 95 proteins), energy metabolism (7.37% of the total 95 proteins), transcription and translation (18.95% of the total 95 proteins), transport (4.21% of the total 95 proteins), inducers (3.16% of the total 95 proteins), stress and defense (26.31% of the total 95 proteins), molecular chaperones (9.47% of the total 95 proteins), protein degradation (3.16% of the total 95 proteins), signal transduction (7.37% of the total 95 proteins), other materials metabolism (5.26% of the total 95 proteins) and unknown functions (5.26% of the total 95 proteins). Proteins related to defense, stress, transcription and translation play an important role in drought response. In addition, we also examined the correlation between protein and transcript levels.ConclusionsThe interaction between enzymatic and non-enzymatic antioxidants, the levels of proline, MDA, H2O2 and the relative conductivity, and the expression level of proteins in drought-treated plants all contribute to drought resistance in Amygdalus mira (Koehne) Yü et Lu. Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-1000-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.