Z. are inventors of two pending patent applications for use of BCL-X L PROTACs as senolytic and antitumor agents. R.H., G.Z., and D.Z. are co-founders of and have equity in Dialectic Therapeutics, which develops BCL-X L PROTACs to treat cancer.
Assessing whether a protein structure is a good target or not before actually doing structure-based drug design on it is an important step to speed up the ligand discovery process. This is known as the "druggability" or "ligandability" assessment problem that has attracted increasing interest in recent years. The assessment typically includes the detection of ligand-binding sites on the protein surface and the prediction of their abilities to bind drug-like small molecules. A brief summary of the established methods of binding sites detection and druggability(ligandability) prediction, as well as a detailed description of the CAVITY approach developed in the authors' group was given. CAVITY showed good performance on ligand-binding site detection, and was successfully used to predict both the ligandabilities and druggabilities of the detected binding sites.
Small molecules that selectively kill senescent cells (SCs), termed senolytics, have the potential to prevent and treat various age-related diseases and extend healthspan. The use of Bcl-xl inhibitors as senolytics is largely limited by their on-target and dose-limiting platelet toxicity. Here, we report the use of proteolysis-targeting chimera (PROTAC) technology to reduce the platelet toxicity of navitoclax (also known as ABT263), a Bcl-2 and Bcl-xl dual inhibitor, by converting it into PZ15227 (PZ), a Bcl-xl PROTAC, which targets Bcl-xl to the cereblon (CRBN) E3 ligase for degradation. Compared to ABT263, PZ is less toxic to platelets, but equally or slightly more potent against SCs because CRBN is poorly expressed in platelets. PZ effectively clears SCs and rejuvenates tissue stem and progenitor cells in naturally aged mice without causing severe thrombocytopenia. With further improvement, Bcl-xl PROTACs have the potential to become safer and more potent senolytic agents than Bcl-xl inhibitors.
We have developed a new version (2.0) of the de novo drug design program LigBuilder. With LigBuilder 2.0, the synthesis accessibility of designed compounds can be analyzed, and a cavity detection procedure is implemented to detect the positions and shapes of the binding sites on the surface of a given protein structure and to quantitatively estimate drugability. Ligands are designed to best fit the detected cavities using a set of rules for evaluation. Drug-like and privileged fragments are used to construct the ligands with the aid of internal and external absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and drug-like filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.