In this paper we consider sequential joint state and static parameter estimation given discrete time observations associated to a partially observed stochastic partial differential equation. It is assumed that one can only estimate the hidden state using a discretization of the model. In this context, it is known that the multi-index Monte Carlo (MIMC) method of [1] can be used to improve over direct Monte Carlo from the most precise discretizaton. However, in the context of interest, it cannot be directly applied, but rather must be used within another method such as sequential Monte Carlo (SMC). We show how one can use the MIMC method by renormalizing the standard identity and approximating the resulting identity using the SMC 2 method of [2], which is an exact method that can be used in this context. We prove that our approach can reduce the cost to obtain a given mean square error, relative to just using SMC 2 on the most precise discretization. We demonstrate this with some numerical examples.
This paper considers a new approach to using Markov chain Monte Carlo (MCMC) in contexts where one may adopt multilevel (ML) Monte Carlo. The underlying problem is to approximate expectations w.r.t. an underlying probability measure that is associated to a continuum problem, such as a continuous-time stochastic process. It is then assumed that the associated probability measure can only be used (e.g. sampled) under a discretized approximation. In such scenarios, it is known that to achieve a target error, the computational effort can be reduced when using MLMC relative to i.i.d. sampling from the most accurate discretized probability. The ideas rely upon introducing hierarchies of the discretizations where less accurate approximations cost less to compute, and using an appropriate collapsing sum expression for the target expectation. If a suitable coupling of the probability measures in the hierarchy is achieved, then a reduction in cost is possible. This article focused on the case where exact sampling from such coupling is not possible. We show that one can construct suitably coupled MCMC kernels when given only access to MCMC kernels which are invariant with respect to each discretized probability measure. We prove, under verifiable assumptions, that this coupled MCMC approach in a ML context can reduce the cost to achieve a given error, relative to exact sampling. Our approach is illustrated on a numerical example.
Multivariate stochastic volatility models are a popular and wellknown class of models in the analysis of financial time series because of their abilities to capture the important stylized facts of financial returns data. We consider the problems of filtering distribution estimation and also marginal likelihood calculation for multivariate stochastic volatility models with crossleverage effects in the high dimensional case, that is when the number of financial time series that we analyze simultaneously (denoted by d) is large. The standard particle filter has been widely used in the literature to solve these intractable inference problems. It has excellent performance in low to moderate dimensions, but collapses in the high dimensional case. In this article, two new and advanced particle filters proposed in [4], named the space-time particle filter and the marginal space-time particle filter, are explored for these estimation problems. The better performance in both the accuracy and stability for the two advanced particle filters are shown using simulation and empirical studies in comparison with the standard particle filter. In addition, Bayesian static model parameter estimation problem is considered with the advances in particle Markov chain Monte Carlo methods. The particle marginal Metropolis-Hastings algorithm is applied together with the likelihood estimates from the space-time particle filter to infer the static model parameter successfully when that using the likelihood estimates from the standard particle filter fails.
This paper considers a new approach to using Markov chain Monte Carlo (MCMC) in contexts where one may adopt multilevel (ML) Monte Carlo. The underlying problem is to approximate expectations w.r.t. an underlying probability measure that is associated to a continuum problem, such as a continuous-time stochastic process. It is then assumed that the associated probability measure can only be used (e.g. sampled) under a discretized approximation. In such scenarios, it is known that to achieve a target error, the computational effort can be reduced when using MLMC relative to exact sampling from the most accurate discretized probability. The ideas rely upon introducing hierarchies of the discretizations where less accurate approximations cost less to compute, and using an appropriate collapsing sum expression for the target expectation. If a suitable coupling of the probability measures in the hierarchy is achieved, then a reduction in cost is possible. This article focused on the case where exact sampling from such coupling is not possible. We show that one can construct suitably coupled MCMC kernels when given only access to MCMC kernels which are invariant with respect to each discretized probability measure. We prove, under assumptions, that this coupled MCMC approach in a ML context can reduce the cost to achieve a given error, relative to exact sampling. Our approach is illustrated on a numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.