Alternative splicing (AS) plays pivotal roles in regulating plant growth and development, flowering, biological rhythms, signal transduction, and stress responses. However, no studies on AS have been performed in Liriodendron chinense, a deciduous tree species that has high economic and ecological value. In this study, we used multiple tools and algorithms to analyze transcriptome data derived from seven tissues via hybrid sequencing. Although only 17.56% (8,503/48,408) of genes in L. chinense were alternatively spliced, these AS genes occurred in 37,844 AS events. Among these events, intron retention was the most frequent AS event, producing 1,656 PTCcontaining and 3,310 non-PTC-containing transcripts. Moreover, 183 long noncoding RNAs (lncRNAs) also underwent AS events. Furthermore, weighted gene coexpression network analysis (WGCNA) revealed that there were great differences in the activities of transcription and post-transcriptional regulation between pistils and leaves, and AS had an impact on many physiological and biochemical processes in L. chinense, such as photosynthesis, sphingolipid metabolism, fatty acid biosynthesis and metabolism. Moreover, our analysis showed that the features of genes may affect AS, as AS genes and non-AS genes had differences in the exon/intron length, transcript length, and number of exons/introns. In addition, the structure of AS genes may impact the frequencies and types of AS because AS genes with more exons or introns tended to exhibit more AS events, and shorter introns tended to be retained, whereas shorter exons tended to be skipped. Furthermore, eight AS genes were verified, and the results were consistent with our analysis. Overall, this study reveals that AS and gene interaction are mutual-on one hand, AS can affect gene expression and translation, while on the other hand, the structural characteristics of the gene can also affect AS. This work is the first to comprehensively report on AS in L. chinense, and it can provide a reference for further research on AS in L. chinense.
Hoffmann & Sgro, 2011). Indeed, due to their sessile nature and limited dispersal distance of pollen/seeds, it is impossible for plants to avoid disadvantageous environments by rapid migration, as observed in animals. Therefore, ecological adaptive differentiation is
The MYB transcription factor family is one of the largest families in plants, and its members have various biological functions. R2R3-MYB genes are involved in the synthesis of pigments that yield petal colors. Liriodendron plants are widely cultivated as ornamental trees owing to their peculiar leaves, tulip-like flowers, and colorful petals. However, the mechanism underlying petal coloring in this species is unknown, and minimal information about MYB genes in Liriodendron is available. Herein, this study aimed to discern gene(s) involved in petal coloration in Liriodendron via genome-wide identification, HPLC, and RT-qPCR assays. In total, 204 LcMYB superfamily genes were identified in the Liriodendron chinense genome, and 85 R2R3-MYB genes were mapped onto 19 chromosomes. Chromosome 4 contained the most (10) R2R3-MYB genes, and chromosomes 14 and 16 contained the fewest (only one). MEME analysis showed that R2R3-MYB proteins in L. chinense were highly conserved and that their exon-intron structures varied. The HPLC results showed that three major carotenoids were uniformly distributed in the petals of L. chinense, while lycopene and β-carotene were concentrated in the orange band region in the petals of Liriodendron tulipifera. Furthermore, the expression profiles via RT-qPCR assays revealed that four R2R3-MYB genes were expressed at the highest levels at the S3P/S4P stage in L. tulipifera. This result combined with the HPLC results showed that these four R2R3-MYB genes might participate in carotenoid synthesis in the petals of L. tulipifera. This work laid a cornerstone for further functional characterization of R2R3-MYB genes in Liriodendron plants.
Background Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. Results In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. Conclusions Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.
Background The unique ‘mandarin jacket’ leaf shape is the most famous trait of Liriodendron chinense and this characteristic gives L. chinense aesthetic and landscaping value. However, the underlying regulatory mechanism of genes involved in the leaf development of L. chinense has remained unclear. Methods Based on transcriptome data of leaves at different developmental stages from L. chinense, we identified differentially expression genes (DEGs) functioning in leaf development. A candidate gene named LcCUC2-like (LcCUC2L) had high similarity in sequence with Arabidopsis thaliana CUC2, and used for further research. We isolated the full-length LcCUC2L gene and its promoter from L. chinense. Subsequently, we analyzed the function of the LcCUC2L gene and its promoter activity via transformation into A. thaliana. Results In this study, we found that the LcCUC2L and AtCUC2 are homologous in sequence but not homologous in function. Unlike the role of AtCUC2 in leaf serration and SAM formation, the LcCUC2L mainly regulates cotyledon development and rosette leaf number. Histochemical β-glucuronidase (GUS) staining revealed that LcCUC2L was expressed in the cotyledons of A. thaliana seedlings, indicating that the LcCUC2L may play a role in cotyledon development. Ectopic expression of LcCUC2L resulted in long, narrow cotyledons without petioles, abnormal lamina epidermis cells and defective vascular tissue in cotyledons, and these results were consistent with the LcCUC2L expression pattern. Further analysis showed that overexpression of LcCUC2L also induced numerous rosette leaves. Also, LcCUC2L and other related genes showed a severe response in L. chinense by introducing exogenous auxin stimulation, partly revealed that LcCUC2L affects the leaf development by regulating the auxin content. Conclusions These results suggest that LcCUC2L may play a critical role in leaf development and morphogenesis in L. chinense, and our findings provide insight into the molecular mechanisms of leaf development in L. chinense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.