An experimental investigation of single Taylor bubbles rising in stagnant and downward flowing non-Newtonian fluids was carried out in an 80 ft long inclined pipe (4°, 15°, 30°, 45° from vertical) of 6 in. inner diameter. Water and four concentrations of bentonite–water mixtures were applied as the liquid phase, with Reynolds numbers in the range 118 < Re < 105,227 in countercurrent flow conditions. The velocity and length of Taylor bubbles were determined by differential pressure measurements. The experimental results indicate that for all fluids tested, the bubble velocity increases as the inclination angle increases, and decreases as liquid viscosity increases. The length of Taylor bubbles decreases as the downward flow liquid velocity and viscosity increase. The bubble velocity was found to be independent of the bubble length. A new drift velocity correlation that incorporates inclination angle and apparent viscosity was developed, which is applicable for non-Newtonian fluids with the Eötvös numbers (E0) ranging from 3212 to 3405 and apparent viscosity (μapp) ranging from 0.001 Pa∙s to 129 Pa∙s. The proposed correlation exhibits good performance for predicting drift velocity from both the present study (mean absolute relative difference is 0.0702) and a database of previous investigator’s results (mean absolute relative difference is 0.09614).
In this study, fluid viscosity effects on LSP performance in terms of boosting pressure were numerically investigated. A water–glycerin mixture with different concentrations corresponding to varying apparent viscosities was flowed through an in-house manufactured LSP under various flow conditions, e.g., changing flow rates, rotational speeds, and fluid viscosities. The pressure increment between the intake and discharge of the LSP was recorded using the differential pressure transducer. The same pump geometries, fluid properties and flow conditions were incorporated into the numerical configurations, where three-dimensional (3D), steady-state, Reynolds-averaged Navier–Stokes (RANS) equations with a standard SST (shear stress transport) turbulence model were solved by a commercial CFD code. With the high-quality poly-hexcore grids, the simulated pressure increment was compared with the corresponding experimental measurement. The internal flow structures and characteristics within the cavities contained by the LSP impeller and diffuser were also analyzed. The good agreement between the numerical results against the experimental data verified the methodology adopted in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.