Abnormal fibroblast proliferation and excessive extracellular matrix (ECM) deposition lead to the formation of hypertrophic scars (HSs). However, there is no satisfactory method to inhibit the occurrence and development of HSs. In our study, platycodin D (PD), a natural compound extracted from Platycodon grandiflorus, inhibited HSs formation both in vitro and in vivo. First, qRT-PCR and Western blot were used to confirm PD dose-dependently downregulated the expression of Col I, Col III and α-SMA in human hypertrophic scar-derived fibroblasts (HSFs) (p < 0.05). Second, cck-8, transwell and wound healing assays verified PD suppressed the proliferation (p < 0.05) and migration of HSFs (p < 0.05), and inhibited the differentiation of HSFs into myofibroblasts. Moreover, PD-induced HSFs apoptosis were analyzed by flow cytometry and the apoptosis was activated through a caspase-dependent pathway. The rabbit ear scar model was used to further confirm the inhibitory effect of PD on collagen and α-SMA deposition. Finally, Western blot analysis showed that PD reduced TGF-β RI expression (p < 0.05) and affected matrix metalloproteinase 2 (MMP2) protein levels (p < 0.05). In conclusion, our study showed that PD inhibited the proliferation and migration of HSFs by inhibiting fibrosis-related molecules and promoting apoptosis via a caspase-dependent pathway. The TGF-β/Smad pathway also mediated the inhibition of HSFs proliferation and HSFs differentiation into myofibroblasts. Therefore, PD is a potential therapeutic agent for HSs and other fibrotic diseases.
Bone morphogenetic protein (BMP) is a growth factor that effectively promotes osteogenesis. Microsphere-based drug-delivery systems can facilitate an increase in the local concentration of BMP, thus promoting bone formation. In this study, calcium phosphate silicate (CPS) microspheres were used as drug-loading systems for BMP. Three groups�CPS, CPS + BMP, and CPS + BMP + soy lecithin (SL)�were set up, where SL was used to prolong the osteogenic effect of the microsphere system. Bone marrow mesenchymal stem cells and femoral defects in rats were used to compare the osteogenic ability of the three groups. The results indicated that CPS microspheres were good carriers of BMP, facilitating a smoother release into the cells and tissues. SL loading improved the loading rate of BMP, which promoted the osteogenic effect of the microspheres with BMP. We propose CPS microspheres as potential drug-delivery systems that can be effectively used in the treatment of bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.