The success of these studies clearly demonstrates the power of coupling the complementary methods of combinatorial chemistry and structure-based design. We anticipate that the general approaches described here will be successful for other members of the aspartyl protease class and for many other enzyme classes.
Trimeric class I virus fusion proteins undergo a series of conformational rearrangements that leads to the association of C-and N-terminal heptad repeat domains in a ''trimer-of-hairpins'' structure, facilitating the apposition of viral and cellular membranes during fusion. This final fusion hairpin structure is sustained by protein-protein interactions, associations thought initially to be refractory to small-molecule inhibition because of the large surface area involved. By using a photoaffinity analog of a potent respiratory syncytial virus fusion inhibitor, we directly probed the interaction of the inhibitor with its fusion protein target. Studies have shown that these inhibitors bind within a hydrophobic cavity formed on the surface of the N-terminal heptad-repeat trimer. In the fusogenic state, this pocket is occupied by key amino acid residues from the C-terminal heptad repeat that stabilize the trimer-of-hairpins structure. The results indicate that a low-molecular-weight fusion inhibitor can interfere with the formation or consolidation of key structures within the hairpin moiety that are essential for membrane fusion. Because analogous cavities are present in many class I viruses, including HIV, these results demonstrate the feasibility of this approach as a strategy for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.