Conventional wireless network designs to date target endpoint designs that view the channel as a given. Examples include rate and power control at the transmitter, sophisticated receiver decoder designs, and high-performance forward error correction for the data itself. We instead explore whether it is possible to reconfigure the environment itself to facilitate wireless communication. In this work, we instrument the environment with a large array of inexpensive antenna (LAIA) elements, and design algorithms to configure LAIA elements in real time. Our system achieves a high level of programmability through rapid adjustments of an on-board phase shifter in each LAIA element. We design a channel decomposition algorithm to quickly estimate the wireless channel due to the environment alone, which leads us to a process to align the phases of the LAIA elements. We implement and deploy a 36-element LAIA array in a real indoor home environment. Experiments in this setting show that, by reconfiguring the wireless environment, we can achieve a 24% TCP throughput improvement on average and a median improvement of 51.4% in Shannon capacity over baseline single-antenna links.
WiFi-based gesture recognition emerges in recent years and attracts extensive attention from researchers. Recognizing gestures via WiFi signal is feasible because a human gesture introduces a time series of variations to the received raw signal. The major challenge for building a ubiquitous gesture recognition system is that the mapping between each gesture and the series of signal variations is not unique, exact the same gesture but performed at different locations or with different orientations towards the transceivers generates entirely different gesture signals (variations). To remove the location dependency, prior work proposes to use gesture-level location-independent features to characterize the gesture instead of directly matching the signal variation pattern. We observe that gesture-level features cannot fully remove the location dependency since the signal qualities inside each gesture are different and also depends on the location. Therefore, we divide the signal time series of each gesture into segments according to their qualities and propose customized signal processing techniques to handle them separately. To realize this goal, we characterize signal's sensing quality by building a mathematical model that links the gesture signal with the ambient noise, from which we further derive a unique metric i.e., error of dynamic phase index (EDP-index) to quantitatively describe the sensing quality of signal segments of each gesture. We then propose a quality-oriented signal processing framework that maximizes the contribution of the high-quality signal segments and minimizes the impact of low-quality signal segments to improve the performance of gesture recognition applications. We develop a prototype on COTS WiFi devices. The extensive experimental results demonstrate that our system can recognize gestures with an accuracy of more than 94% on average, and significant improvements compared with state-of-arts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.