Graphite oxide has become an important precursor for graphene oxide, reduced graphene oxide, and a wide range of other graphene-based materials or composites. In numerous Hummers’ methods for the preparation of graphite oxide, water is added to promote the oxidization reaction but causes problems of tedious purification and liquid waste, which raises concerns of environment processing cost in the large-scale production of graphite oxide. Herein, we propose a highly efficient oxidization of chemical expandable graphite (CEG) for one-step preparation of graphite oxide while water is not added during the oxidization. This method features a direct separation of the solid reactant from the liquid oxidant, allowing the reuse of waste acid and quick centrifugal washing of products close to neutral pH. This strategy also benefits the highly efficient utilization of the oxidant potassium permanganate (KMnO4), indicated by the high monolayer/bilayer yield (∼90%) of graphene oxide for a KMnO4/CEG mass ratio as low as 2.5. Without the hydration reaction, which generally leads to etching of graphitic sheets, the graphene oxide platelets made from this strategy readily maintain a large size of 30∼110 μm for the CEG of 80 mesh grids (∼175 μm), making the current method suitable for the preparation of thermally and electrically conductive graphene films. This work provides a more efficient and environmentally friendly preparation technique for the industrial production of graphite oxide and relevant materials.
In order to improve toughness of rigid poly(vinyl chloride) (PVC), we prepared multilayer graphene (MLG) filled PVC composites through conventional meltmixing methods by taking advantages of easy dispersion and high flexibility of graphene. Microstructure, static, and dynamic mechanical properties of the MLG/PVC composites were investigated in details. We found that a small amount of MLG loadings (0.36 wt%) could greatly increase tensile fracture toughness and impact strength of the MLG/PVC composites, which is mainly attributed to high flexibility of the crumpled MLG throughout PVC matrix. Moreover, the presence of MLG can weaken intermolecular interactions and improve segmental motion of PVC chains, consequently resulting in low glass transition temperature and high toughness of the MLG/PVC composites. By virtue of its enhanced toughness and easy operation,
Graphene oxide (GO) has demonstrated potential applications in various fields, and attracted intensive attention in industry as well. Numerous companies worldwide have been working on the industrial applications of GO-based materials in, e.g., thermal management, multifunctional composites, anti-corrosion paints, lubricants, energy storage, environment protection and biomedicals. This review presents a short summary on the proceedings of GO towards industrialization, including the large-scale production and some promising applications, by providing views on the processing strategies and challenges specifically for the industrial use of GO. This review would help the scientists in this area to find topics for overcoming challenges together with engineers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.