Ecological studies of orangutans have almost exclusively focused on populations living in primary or selectively logged rainforest. The response of orangutans to severe habitat degradation remains therefore poorly understood. Most experts assume that viable populations cannot survive outside undisturbed or slightly disturbed forests. This is a concern because nearly 75% of all orangutans live outside protected areas, where degradation of natural forests is likely to occur, or where these are replaced by planted forests. To improve our understanding of orangutan survival in highly altered forest habitats, we conducted population density surveys in two pulp and paper plantation concessions in East Kalimantan, Indonesia. These plantations consist of areas planted with fast-growing exotics intermixed with stands of highly degraded forests and scrublands. Our rapid surveys indicate unexpectedly high orangutan densities in plantation landscapes dominated by Acacia spp., although it remains unclear whether such landscapes can maintain long-term viable populations. These findings indicate the need to better understand how plantation-dominated landscapes can potentially be incorporated into orangutan conservation planning. Although we emphasize that plantations have less value for overall biodiversity conservation than natural forests, they could potentially boost the chances of orangutan survival. Our findings are based on a relatively short study and various methodological issues need to be addressed, but they suggest that orangutans may be more ecologically flexible than previously thought.
Aside from anecdotal evidence, terrestriality in orangutans (Pongo spp.) has not been quantified or subject to careful study and important questions remain about the extent and contexts of terrestrial behavior. Understanding the factors that influence orangutan terrestriality also has significant implications for their conservation. Here we report on a camera trapping study of terrestrial behavior in the northeastern Bornean orangutan, Pongo pygmaeus morio, in Wehea Forest, East Kalimantan, Indonesia. We used 78 non-baited camera traps set in 43 stations along roads, trails, and at mineral licks (sepans) to document the frequency of orangutan terrestriality. Habitat assessments were used to determine how terrestrial behavior was influenced by canopy connectivity. We compared camera trapping results for P. p. morio to those for a known terrestrial primate (Macaca nemestrina), and another largely arboreal species (Presbytis rubicunda) to assess the relative frequency of terrestrial behavior by P. p. morio. A combined sampling effort of 14,446 trap days resulted in photographs of at least 15 individual orangutans, with females being the most frequently recorded age sex class (N=32) followed by flanged males (N=26 records). P. p. morio represented the second most recorded primate (N=110 total records) of seven primate species recorded. Capture scores for M. nemestrina (0.270) and P. p. morio (0.237) were similar and almost seven times higher than for the next most recorded primate, P. rubicunda (0.035). In addition, our results indicate that for orangutans, there was no clear relationship between canopy connectivity and terrestriality. Overall, our data suggest that terrestriality is relatively common for the orangutans in Wehea Forest and represents a regular strategy employed by individuals of all age-sex classes. As Borneo and Sumatra increasingly become characterized by mixed-use habitats, understanding the ecological requirements and resilience in orangutans is necessary for designing optimal conservation strategies.
Nest construction is a daily habit of independent orangutans for sleeping or resting. Data on their nests have been used in various ecological studies (e.g., density estimation, ranging behavior, evolution of material culture) because they are the most observable field signs. We investigated nest size and nest site features of Bornean orangutans in the wild during 10 months' fieldwork at three sites in East Kalimantan, Indonesia: Kutai National Park, Birawa, and Meratus. To examine individual variation, we followed 31 individual orangutans and recorded the 92 nests they made for nest size (diameter) and nest site features (height of nest above ground, tree species used for the nest site, the diameter and height of the tree, whether the nest was new or reused, and nest location within the tree). Analyses taking age-sex classes of the focal individuals into consideration showed significant age-sex differences in nest size and location, but not in nest height or nest tree features (diameter, height of tree, and height of lowest branch). Mature orangutans (adult females, unflanged and flanged males) made larger nests than immatures (juveniles and adolescents). Flanged male orangutans with larger nests used stable locations for nesting sites and reused old nests more frequently than immatures. The overall proportion of nests in open (exposed) locations was higher than in closed (sheltered) locations. Flanged males and immatures frequently made open nests, whereas adult females with an infant preferred closed locations. The good correspondence between nest size and age-sex classes indicates that nest size variation may reflect body size and therefore age-sex variation in the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.