To develop a multi-channel device event segmentation and feature extraction algorithm that is robust to changes in data distribution. Methods: We introduce an adaptive transfer learning algorithm to classify and segment events from non-stationary multi-channel temporal data. Using a multivariate hidden Markov model (HMM) and Fisher's linear discriminant analysis (FLDA) the algorithm adaptively adjusts to shifts in distribution over time. The proposed algorithm is unsupervised and learns to label events without requiring a priori information about true event states. The procedure is illustrated on experimental data collected from a cohort in a human viral challenge (HVC) study, where certain subjects have disrupted wake and sleep patterns after exposure to an H1N1 influenza pathogen. Results: Simulations establish that the proposed adaptive algorithm significantly outperforms other event classification methods. When applied to early time points in the HVC data, the algorithm extracts sleep/wake features that are predictive of both infection and infection onset time. Conclusion:The proposed transfer learning event segmentation method is robust to temporal shifts in data distribution and can be used to produce highly discriminative event-labeled features for health monitoring. Significance: Our integrated multisensor signal processing and transfer learning method is applicable to many ambulatory monitoring applications. 1 Index Terms-Covariate shift, domain adaptation, wearable sensors, human viral challenge study, digital health, early detection of viral infection.
Using data from a longitudinal viral challenge study, we find that the post-exposure viral shedding and symptom severity are associated with a novel measure of pre-exposure cognitive performance variability (CPV), defined before viral exposure occurs. Each individual’s CPV score is computed from data collected from a repeated NeuroCognitive Performance Test (NCPT) over a 3 day pre-exposure period. Of the 18 NCPT measures reported by the tests, 6 contribute materially to the CPV score, prospectively differentiating the high from the low shedders. Among these 6 are the 4 clinical measures digSym-time, digSym-correct, trail-time, and reaction-time, commonly used for assessing cognitive executive functioning. CPV is found to be correlated with stress and also with several genes previously reported to be associated with cognitive development and dysfunction. A perturbation study over the number and timing of NCPT sessions indicates that as few as 5 sessions is sufficient to maintain high association between the CPV score and viral shedding, as long as the timing of these sessions is balanced over the three pre-exposure days. Our results suggest that variations in cognitive function are closely related to immunity and susceptibility to severe infection. Further studying these relationships may help us better understand the links between neurocognitive and neuroimmune systems which is timely in this COVID-19 pandemic era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.