Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.
Highly pathogenic (HP) avian influenza A H7N9 virus has emerged in China since 2016. In recent years, it has been most prevalent in northern China. However, several strains of HP H7N9 reappeared in southwestern China (Yunnan Province) in 2021. As a result, we are wondering if these viruses have re-emerged in situ or been reintroduced. Here, we present phylogenetic evidence that the HP H7N9 viruses isolated in Yunnan emigrated from northern to southwestern China in 2020. The northern subregion of China has become a novel epicenter in HP H7N9 dissemination. Meanwhile, a cleavage motif re-emerged due to the T341I mutation, implying a parallel evolution. This cross-region transmission, which originated in non-adjacent provinces and traveled a great geographic distance in an unknown way, indicates that HP H7N9 dissemination did not halt in 2020, even under the shadow of the COVID-19 pandemic. Additional surveillance studies in poultry are required to determine the HP H7N9 virus's geographic distribution and spread.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11262-023-01974-4.
Swine influenza is not only an economically important respiratory disease in swine, but also constantly poses a threat to human health. Hence, developing a rapid, sensitive and efficient detection method of swine influenza virus (SIV) is highly essential. By aligning the HA gene sequences of SIV circulating in China in recent 10 years, a H1 primer-probe set targeting both Eurasian avian-like H1N1 (EA H1N1) and Pandemic 2009 H1N1 (Pdm09 H1N1) lineages plus a H3 prime-probe set targeting the prevalent human-like H3N2 (HL H3N2) subtype were designed, respectively. Further, a TaqMan-MGB based duplex one-step real time RT-PCR (RRT-PCR) assay was established and evaluated. The duplex RRT-PCR possessed the detection limit of 5 copies/μL HA plasmid for each of the EA H1N1, Pdm09 H1N1 and HL H3N2 subtype SIVs, and matched an overall detection sensitivity of 100% and specificity of 91.67% with traditional virus isolation through chicken embryo inoculation using experimentally infected mice lung samples. Besides, the method showed high repeatability both within-run and between-runs, and no cross-reactivity against some commonly circulated porcine viruses in China. Furthermore, the duplex RRT-PCR method revealed a relatively higher prevalent rate of H1 than H3 subtype SIV in 166 nasal swabs from pigs in some slaughterhouse during October ~ December, 2019. This developed assay could be very helpful for rapid differential detection and routine surveillance of EA H1N1, Pdm09 H1N1 and HL H3N2 subtype SIVs in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.