The present study investigated the spatial and seasonal variations and sources of 16 priority polycyclic aromatic hydrocarbons (PAHs) in Lanzhou, a petrochemical industrialized and the capital city of Gansu province, northwest China. The human health risks to these PAHs were assessed using an in vitro genotoxic bioassay technique. Associations among direct genotoxic potency, atmospheric PAH concentrations, and potential carcinogen risks were examined. Due to high PAH emissions from fossil fuel combustion and petrochemical industries, considerable higher PAH levels in the atmosphere were observed in Xigu district, a suburb featured by heavy petrochemical industry, compared with those collected at downtown and rural sampling sites. Ambient PAH levels at all sampling sites during the wintertime were higher than that in the summertime due to the winter domestic heating. BaP equivalent (BaPeq) concentrations in winter (41 ng/m) and summer (28 ng/m) exceeded the China's new national daily BaPeq standard. The average excess inhalation cancer risks (ECR) due to human exposure to PAHs during winter and summer sampling periods were 45-3540 cancer cases and 31-2451 cases per million people, respectively. The average ECR in the industrial area of Lanzhou valley was 1.97 (winter) and 1.88 times (summer) higher than that in other sampling areas. The higher ECR in the industrial area was resulted primarily by industrial activities and insufficient emission control measures. Extracts from passive air samples in genotoxicity SOS/umu test demonstrated that the genotoxic effect of atmospheric PAHs in Lanzhou was seasonal dependent. PAH air samples collected in winter showed more statistically significant genotoxicity, as manifested by a strong correlation between in vitro genotoxicity and atmospheric PAH concentrations. This indicates that the local residents were under higher potential cancer risk through the inhalation of ambient PAH air concentrations in Lanzhou valley during the wintertime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.